万本电子书0元读

万本电子书0元读

顶部广告

演化学习:理论与算法进展电子书

机器学习知名学者周志华教授新作; 中国高校知名人工智能研究团队20年攻关的新理论成果; 给强大的演化算法找到“所以然”的理论支撑,指导机器学习优化问题的一步发展; 关键定理详细证明过程以附录形式给出,以供有余力的读者深挖。

售       价:¥

纸质售价:¥74.30购买纸书

169人正在读 | 0人评论 6.6

作       者:周志华 俞扬 钱超 著

出  版  社:人民邮电出版社有限公司

出版时间:2021-07-01

字       数:25.2万

所属分类: 科技 > 计算机/网络 > 软件系统

温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印

为你推荐

  • 读书简介
  • 目录
  • 累计评论(0条)
  • 读书简介
  • 目录
  • 累计评论(0条)
演化学习利用演化算法求解机器学习中的复杂优化问题, 在实践中取得了许多成功, 但因其缺少坚实的理论基础, 在很长时期内未获得机器学习社区的广泛受. 本书主要内容为三位作者在这个方向上过去二十年中主要工作的总结. 全书共18 章, 分为四个部分: 部分(第1~2 章) 简要介绍演化学习和一些关于理论研究的预备知识; 第二部分(第3~6章) 介绍用于分析运行时间复杂度和逼近能力这两个演化学习的基本理论性质的通用工具; 第三部分(第7~12 章) 介绍演化学习关键因素对算法性能影响的一系列理论结果, 包括交叉算子、解的表示、非精确适应度评估、种群的影响等; 第四部分(第13~18 章) 介绍一系列基于理论结果启发的具有一定理论保障的演化学习算法. 本书适合对演化学习感兴趣的研究人员、学生和实践者阅读. 书中第二部分内容或可为有兴趣一步探索演化学习理论基础的读者提供分析工具, 第三部分内容或有助于读者一步理解演化学习过程并为新算法设计提供启发, 第四部分内容或可为读者解决一些现实机器学习问题提供新的算法方案.<br/>【推荐语】<br/>机器学习知名学者周志华教授新作; 中国高校知名人工智能研究团队20年攻关的新理论成果; 给强大的演化算法找到“所以然”的理论支撑,指导机器学习优化问题的一步发展; 关键定理详细证明过程以附录形式给出,以供有余力的读者深挖。<br/>【作者】<br/>周志华,南京大学计算机科学与技术系主任、人工智能学院院长、计算机软件新技术国家重实验室常务副主任、机器学习与数据挖掘研究所(LAMDA)所长。ACM AAAS AAAI IEEE IAPR IET CCF CAAI会士,欧洲科学院外籍院士。中国计算机学会常务理事、中国人工智能学会副理事长。 周志华教授主要从事人工智能、机器学习、数据挖掘等领域的研究工作。著有《机器学习》(西瓜书)等广受好评的著作,在本领域顶刊和顶会发表论文两百余篇,被引五万余次。现任AI Magazine顾问,Frontiers of Computer Science(FCS)、Artificial Intelligence等国内外知名期刊主编、副主编、编委等;也担任IJCAI理事会成员(2018-2023),曾担任IJCAI顾问委员会委员、IJCAI 2021程序委员会主席、AAAI 2019程序委员会主席等会议职务。 俞扬,南京大学计算机科学与技术系和LAMDA教授,博导,主要研究领域为人工智能、机器学习、强化学习。 曾获2013年全国优秀博士学位论文奖。发表论文40余篇,包括多篇人工智能、机器学习和数据挖掘国际期刊和会议论文,受邀在IJCAI'18做Early Career Spotlight演讲、在IEEE ICA'17做主旨报告。选2018年全球AI's 10 to Watch,获2018 PAKDD Early Career Award,并任FCS、Artificial Intelligence等多个一流期刊评审人和IJCAI、ICPR等会议领域主席、程序委员。 钱超,南京大学人工智能学院副教授、博导,国家优青。目前主要关注演化算法理论分析、安全演化算法设计与演化学习。作为作者在国际一流期刊和会议上发表二十余篇论文。担任IEEE计算智能分会生物启发计算理论基础任务组主席、IEEE演化计算技术委员会委员、中国人工智能学会青工委副秘书长、Memetic Computing编委、JCST和FCS青年副编。获ACM GECCO’11理论论文奖、IDEAL’16 论文奖,博士论文获中国人工智能学会、江苏省和南京大学优秀博士论文奖。<br/>
目录展开

内容提要

主要符号表

第一部分 绪论与预备知识

第1章 绪论

1.1 机器学习

1.2 演化学习

1.3 多目标优化

1.4 本书组织

第2章 预备知识

2.1 演化算法

2.2 伪布尔函数

2.3 运行时间复杂度

2.4 马尔可夫链建模

2.5 分析工具

第二部分 分析方法

第3章 运行时间分析:收敛分析法

3.1 收敛分析框架

3.2 收敛分析应用例释

3.3 小结

第4章 运行时间分析:调换分析法

4.1 调换分析框架

4.2 调换分析应用例释

4.3 小结

第5章 运行时间分析方法的比较

5.1 分析方法的形式化

5.2 调换分析与适应层分析

5.3 调换分析与漂移分析

5.4 调换分析与收敛分析

5.5 分析方法综论

5.6 小结

第6章 近似分析

6.1 SEIP框架

6.2 SEIP应用例释

6.3 小结

第三部分 理论透视

第7章 边界问题

7.1 边界问题辨识

7.2 案例分析

7.3 小结

第8章 交叉算子

8.1 交叉与变异

8.2 采用交叉算子的多目标演化算法

8.3 案例分析

8.4 实验验证

8.5 小结

第9章 解的表示

9.1 遗传编程之解表示

9.2 案例分析:最大匹配

9.3 案例分析:最小生成树

9.4 实验验证

9.5 小结

第10章 非精确适应度评估

10.1 带噪优化

10.2 带噪适应度的影响

10.3 抗噪:阈值选择

10.4 抗噪:抽样

10.5 实验验证

10.6 小结

第11章 种群

11.1 种群的影响

11.2 种群对噪声的鲁棒性

11.3 小结

第12章 约束优化

12.1 不可行解的影响

12.2 帕累托优化的效用

12.3 小结

第四部分 学习算法

第13章 选择性集成

13.1 选择性集成

13.2 POSE算法

13.3 理论分析

13.4 实验测试

13.5 小结

第14章 子集选择

14.1 子集选择

14.2 POSS算法

14.3 理论分析

14.4 实验测试

14.5 小结

第15章 子集选择:k次模最大化

15.1 单调k次模函数最大化

15.2 POk SM算法

15.3 理论分析

15.4 实验测试

15.5 小结

第16章 子集选择:比率最小化

16.1 单调次模函数的比率最小化

16.2 PORM算法

16.3 理论分析

16.4 实验测试

16.5 小结

第17章 子集选择:噪声

17.1 带噪子集选择

17.2 PONSS算法

17.3 理论分析

17.4 实验测试

17.5 小结

第18章 子集选择:加速

18.1 PPOSS算法

18.2 理论分析

18.3 实验测试

18.4 小结

附录A:证明

参考文献

累计评论(0条) 0个书友正在讨论这本书 发表评论

发表评论

发表评论,分享你的想法吧!

买过这本书的人还买过

读了这本书的人还在读

回顶部