深度学习是机器学习的一个分支,其基础是一组试图使用模型架构建立高水平抽象模型的算法。本书结合R语言介绍深度学习软件包H2O,帮助读者理解深度学习的概念。本书从在R中设置可获取的重要深度学习包始,着转向建立神经网络、预测和深度预测等模型,所有这些模型都由实际案例的辅助来实现。成功安装了H2O软件包后,你将学习预测算法。随后本书会解释诸如过拟合数据、异常数据以及深度预测模型等概念。zui后,本书会介绍设计调参和优化模型的概念。
售 价:¥
纸质售价:¥33.80购买纸书
温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印
为你推荐
内容提要
作者简介
审阅人简介
前言
本书的内容
预备知识
目标读者
排版约定
读者反馈
客户支持
下载示例代码
下载本书的彩色图像
勘误
盗版举报
问题解答
第1章 深度学习入门
1.1 什么是深度学习
1.2 神经网络的概念综述
1.3 深度神经网络
1.4 用于深度学习的R包
1.5 建立可重复的结果
1.5.1 神经网络
1.5.2 deepnet包
1.5.3 darch包
1.5.4 H2O包
1.6 连接R和H2O
1.6.1 初始化H2O
1.6.2 数据集连结到H2O集群
1.7 小结
第2章 训练预测模型
2.1 R中的神经网络
2.1.1 建立神经网络
2.1.2 从神经网络生成预测
2.2 数据过拟合的问题——结果的解释
2.3 用例——建立并运用神经网络
2.4 小结
第3章 防止过拟合
3.1 L1罚函数
3.2 L2罚函数
3.2.1 L2罚函数实战
3.2.2 权重衰减(神经网络中的L2罚函数)
3.3 集成和模型平均
3.4 用例——使用丢弃提升样本外模型性能
3.5 小结
第4章 识别异常数据
4.1 无监督学习入门
4.2 自动编码器如何工作
正则化的自动编码器
1.惩罚的自动编码器
2.去噪自动编码器
4.3 在R中训练自动编码器
4.4 用例——建立并运用自动编码器模型
4.5 微调自动编码器模型
4.6 小结
第5章 训练深度预测模型
5.1 深度前馈神经网络入门
5.2 常用的激活函数——整流器、双曲正切和maxout
5.3 选取超参数
5.4 从深度神经网络训练和预测新数据
5.5 用例——为自动分类生成深度神经网络
5.6 小结
第6章 调节和优化模型
6.1 处理缺失数据
6.2 低准确度模型的解决方案
6.2.1 网格搜索
6.2.2 随机搜索
6.3 小结
参考文献
买过这本书的人还买过
读了这本书的人还在读
同类图书排行榜