万本电子书0元读

万本电子书0元读

顶部广告

机器学习案例实战电子书

1.作者*近几年与多家企业合作,展了多项机器学习数据分析的项目,熟悉机器学习的基本原理,并对 TI One、Spark MLlib、TensorFlow 等主流的机器学习工具的安装、配置以及使用过程中的问题比较熟悉,积累了一些详细的分析案例,可以支撑《机器学习实验案例分析》的内容。 2.通过《机器学习实验案例分析》的学习,学生不仅可以模仿实验指导书重复基于 TI One、、Spark MLlib、TensorFlow 的实际数据分析应用,也很容易与一反三,对新问题设计合理的分析思路。 3.作者是国内早期研究商务智能的学者之一(2001 年起),在国内也是较早设商务智能等数据分析课程(2003 年起),有一定的影响力。商务智能被评为上海市精品课程,获得 2013年高等教育上海市教学成果奖二等奖。 4.通过精心选择数据和应用问题,并设计项目的实验指导书,突出数据分析过程中常遇到的问题,使得学生根据这些材料不仅能消化理解TI One、Spark MLlib、TensorFlow 等主流机器学习平台的原理,还能针对实际问题设计针对可视化分析、机器学习等分析程序,具有较强的实战性。

售       价:¥

纸质售价:¥47.20购买纸书

234人正在读 | 0人评论 6.2

作       者:赵卫东

出  版  社:人民邮电出版社有限公司

出版时间:2019-09-01

字       数:13.2万

所属分类: 科技 > 计算机/网络 > 软件系统

温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印

为你推荐

  • 读书简介
  • 目录
  • 累计评论(1条)
  • 读书简介
  • 目录
  • 累计评论(1条)
机器学习已经广泛地应用于各行各业,深度学习的兴起再次推动了人工智能的热潮。本书结合项目实践,首先讨论了TensorFlow、PySpark、TI-ONE等主流机器学习平台的主要特;然后结合Tableau介绍了数据可视化在银行客户用卡行为分析的应用。在此基础上,利用上述介绍的这些平台,通过多个项目案例,详细地分析了决策树、随机森林、支持向量机、逻辑回归、贝叶斯网络、卷积神经网络、循环神经网络、对抗生成网络等机器学习算法在金融、商业、汽车、电力等领域的应用。 本书内容深浅出,提供了详细的 Python 代码,既可以作为从事机器学习、数据挖掘的相关研究人员的参考书,也可以作为高校相关专业机器学习、数据挖掘等课程的实验和实训教材。<br/>【推荐语】<br/>1.作者*近几年与多家企业合作,展了多项机器学习数据分析的项目,熟悉机器学习的基本原理,并对 TI One、Spark MLlib、TensorFlow 等主流的机器学习工具的安装、配置以及使用过程中的问题比较熟悉,积累了一些详细的分析案例,可以支撑《机器学习实验案例分析》的内容。 2.通过《机器学习实验案例分析》的学习,学生不仅可以模仿实验指导书重复基于 TI One、、Spark MLlib、TensorFlow 的实际数据分析应用,也很容易与一反三,对新问题设计合理的分析思路。 3.作者是国内早期研究商务智能的学者之一(2001 年起),在国内也是较早设商务智能等数据分析课程(2003 年起),有一定的影响力。商务智能被评为上海市精品课程,获得 2013年高等教育上海市教学成果奖二等奖。 4.通过精心选择数据和应用问题,并设计项目的实验指导书,突出数据分析过程中常遇到的问题,使得学生根据这些材料不仅能消化理解TI One、Spark MLlib、TensorFlow 等主流机器学习平台的原理,还能针对实际问题设计针对可视化分析、机器学习等分析程序,具有较强的实战性。<br/>【作者】<br/>复旦大学计算机科学技术学院副教授,博士。主要研究方向为商务数据分析和大数据分析。2015年度上海市科技步二等奖获得者。主持的“商务智能”课程被评为上海市精品课程,并获得2013年度上海市高等教育教学成果二等奖。主持完成国家自然科学基金、上海市浦江人才及企业合作课题等20多个项目。在国内外期刊和相关学术会议发表论文90多篇。出版多本教材和专著<br/>
目录展开

内容提要

前言 FOREWORD

第1章 常用机器学习平台

1.1 常用机器学习工具

1.2 TI-ONE平台概述

1.3 PySpark介绍

1.4 TI-ONE机器学习平台主要的组件

1.4.1 数据源组件

1.4.2 机器学习组件

1.4.3 输出组件

1.4.4 模型评估组件

第2章 银行信用卡风险的可视化分析

2.1 Tableau简介

2.2 客户信用等级影响因素

2.3 客户消费情况对信用等级的影响

2.4 客户拖欠情况对信用等级的影响

2.5 欺诈客户特征分析

第3章 贷款违约行为预测

3.1 建立信用评估模型的必要性

3.2 数据准备与预处理

3.2.1 原始数据集

3.2.2 基础表数据预处理

3.2.3 多表合并

3.3 模型选择

3.3.1 带正则项的Logistic回归模型

3.3.2 朴素贝叶斯模型

3.3.3 随机森林模型

3.3.4 SVM模型

3.4 TI-ONE整体流程

3.4.1 登录TI-ONE

3.4.2 输入工作流名称

3.4.3 上传数据

3.4.4 数据预处理

3.4.5 拆分出验证集

3.4.6 拆分出测试集

3.4.7 模型训练和评估

第4章 保险风险预测

4.1 背景介绍

4.2 数据预处理

4.2.1 数据加载与预览

4.2.2 缺失值处理

4.2.3 属性值的合并与连接

4.2.4 数据转换

4.2.5 数据标准化和归一化

4.3 多维分析

4.4 基于神经网络模型预测保险风险

4.5 使用SVM预测保险风险

第5章 银行客户流失预测

5.1 问题描述

5.2 数据上传

5.3 数据预处理

5.3.1 非数值特征处理

5.3.2 数据离散化处理

5.3.3 数据筛选

5.3.4 数据格式转化

5.3.5 数据分割

5.4 数据建模

5.5 模型校验评估

5.5.1 二分类算法评估

5.5.2 ROC曲线绘制

5.5.3 决策树参数优化

5.5.4 k折交叉验证

5.6 工作流的运行

5.7 算法性能比较

第6章 基于深度神经网络的股票预测

6.1 股票趋势预测的背景和分析思路

6.2 数据提取

6.3 数据预处理

6.3.1 数据归一化

6.3.2 加窗处理

6.3.3 分割数据集

6.3.4 标签独热编码转化

6.4 模型训练

6.5 算法评估

6.6 算法比较

第7章 保险产品推荐

7.1 保险产品推荐的流程

7.2 数据提取

7.2.1 上传原始文件

7.2.2 读取训练集和检验集

7.3 数据预处理

7.3.1 去重和合并数据集

7.3.2 缺失值处理

7.3.3 特征选择

7.3.4 类型变量独热编码

7.3.5 数值变量规范化

7.3.6 生成训练集和检验集

7.4 构建保险预测模型

7.5 模型评估

第8章 零售商品销售预测

8.1 问题分析

8.2 数据探索

8.2.1 上传原始数据

8.2.2 数据质量评估

8.3 数据预处理

8.3.1 填补缺失值

8.3.2 修正异常值

8.3.3 衍生字段

8.3.4 类型变量数值化和独热编码化

8.3.5 数据导出

8.4 建立销售量预测模型

8.4.1 线性回归模型

8.4.2 Ridge回归模型

8.4.3 Lasso回归模型

8.4.4 Elastic Net回归模型

8.4.5 决策树回归模型

8.4.6 梯度提升树回归模型

8.4.7 随机森林回归模型

8.5 模型评估

第9章 汽车备件销售预测

9.1 数据理解

9.2 数据分析流程

9.2.1 设置数据源

9.2.2 数据预处理

9.2.3 建模分析与评估

9.3 聚类分析

第10章 火力发电厂工业蒸汽量预测

10.1 确定业务问题

10.2 数据理解

10.3 工业蒸汽量的预测建模过程

10.3.1 设置数据源

10.3.2 数据预处理

10.3.3 建模分析与评估

第11章 图片风格转化

11.1 CycleGAN原理

11.2 图片风格转化整体流程

11.2.1 设置数据源

11.2.2 数据预处理

11.2.3 模型训练

11.2.4 验证模型参数以及测试集

11.2.5 模型测试——转化图片风格

11.3 运行工作流

11.4 算法比较

11.4.1 CycleGAN与pix2pix模型

11.4.2 CycleGAN与DistanceGAN模型

11.5 使用TensorFlow实现图片风格转化

第12章 人类活动识别

12.1 问题分析

12.2 数据探索

12.3 数据预处理

12.4 模型构建

12.5 模型评估

第13章 GRU算法在基于Session的推荐系统的应用

13.1 问题分析

13.2 数据探索与预处理

13.2.1 数据变换

13.2.2 数据过滤

13.2.3 数据分割

13.2.4 格式转换

13.3 构建GRU模型

13.3.1 GRU概述

13.3.2 构建GRU推荐模型

13.4 模型评估

第14章 人脸老化预测

14.1 问题分析与数据集简介

14.2 图片编码与GAN设计

14.3 模型实现

14.4 实验分析

第15章 出租车轨迹数据分析

15.1 数据获取

15.2 数据预处理

15.3 数据分析

15.3.1 出租车区域推荐以及交通管理建议

15.3.2 城市规划建议

第16章 城市声音分类

16.1 数据准备与探索

16.2 数据特征提取

16.3 构建城市声音分类模型

16.3.1 使用MLP训练声音分类模型

16.3.2 使用LSTM与GRU网络训练声音分类模型

16.3.3 使用CNN训练声音分类模型

16.4 声音分类模型评估

16.4.1 MLP网络性能评估

16.4.2 LSTM与GRU网络性能评估

16.4.3 CNN性能评估

后记 数据分析技能培养

参考文献

累计评论(1条) 1个书友正在讨论这本书 发表评论

发表评论

发表评论,分享你的想法吧!

买过这本书的人还买过

读了这本书的人还在读

回顶部