售 价:¥
温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印
为你推荐
Advanced Machine Learning with Python
Table of Contents
Advanced Machine Learning with Python
Credits
About the Author
About the Reviewers
www.PacktPub.com
eBooks, discount offers, and more
Why subscribe?
Preface
What is advanced machine learning?
What should you expect from this book?
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions
1. Unsupervised Machine Learning
Principal component analysis
PCA – a primer
Employing PCA
Introducing k-means clustering
Clustering – a primer
Kick-starting clustering analysis
Tuning your clustering configurations
Self-organizing maps
SOM – a primer
Employing SOM
Further reading
Summary
2. Deep Belief Networks
Neural networks – a primer
The composition of a neural network
Network topologies
Restricted Boltzmann Machine
Introducing the RBM
Topology
Training
Applications of the RBM
Further applications of the RBM
Deep belief networks
Training a DBN
Applying the DBN
Validating the DBN
Further reading
Summary
3. Stacked Denoising Autoencoders
Autoencoders
Introducing the autoencoder
Topology
Training
Denoising autoencoders
Applying a dA
Stacked Denoising Autoencoders
Applying the SdA
Assessing SdA performance
Further reading
Summary
4. Convolutional Neural Networks
Introducing the CNN
Understanding the convnet topology
Understanding convolution layers
Understanding pooling layers
Training a convnet
Putting it all together
Applying a CNN
Further Reading
Summary
5. Semi-Supervised Learning
Introduction
Understanding semi-supervised learning
Semi-supervised algorithms in action
Self-training
Implementing self-training
Finessing your self-training implementation
Improving the selection process
Contrastive Pessimistic Likelihood Estimation
Further reading
Summary
6. Text Feature Engineering
Introduction
Text feature engineering
Cleaning text data
Text cleaning with BeautifulSoup
Managing punctuation and tokenizing
Tagging and categorising words
Tagging with NLTK
Sequential tagging
Backoff tagging
Creating features from text data
Stemming
Bagging and random forests
Testing our prepared data
Further reading
Summary
7. Feature Engineering Part II
Introduction
Creating a feature set
Engineering features for ML applications
Using rescaling techniques to improve the learnability of features
Creating effective derived variables
Reinterpreting non-numeric features
Using feature selection techniques
Performing feature selection
Correlation
LASSO
Recursive Feature Elimination
Genetic models
Feature engineering in practice
Acquiring data via RESTful APIs
Testing the performance of our model
Translink Twitter
Consumer comments
The Bing Traffic API
Deriving and selecting variables using feature engineering techniques
The weather API
Further reading
Summary
8. Ensemble Methods
Introducing ensembles
Understanding averaging ensembles
Using bagging algorithms
Using random forests
Applying boosting methods
Using XGBoost
Using stacking ensembles
Applying ensembles in practice
Using models in dynamic applications
Understanding model robustness
Identifying modeling risk factors
Strategies to managing model robustness
Further reading
Summary
9. Additional Python Machine Learning Tools
Alternative development tools
Introduction to Lasagne
Getting to know Lasagne
Introduction to TensorFlow
Getting to know TensorFlow
Using TensorFlow to iteratively improve our models
Knowing when to use these libraries
Further reading
Summary
A. Chapter Code Requirements
Index
买过这本书的人还买过
读了这本书的人还在读
同类图书排行榜