万本电子书0元读

万本电子书0元读

顶部广告

深度学习模型及应用详解电子书

突出应用和实践成果 本书面向的读者是学习和运用深度学习模型到具体应用场景的企业工程师、科研院所的学生和科研人员。目的是对深度学习模型和算法有了解后,重应用和实践及快速部署在他们工作的领域并希望取得落地成果。 内容讲解由浅深 本书*部分第二部分是基础,介绍了深度学习理论和常用工具及常见的深度学习模型。 第三部分是阶内容,讲解应用于计算机视觉、自然语言处理及理解、和决策任务的高级深度学习模型。第四部分是工程实践、在线推理优化和未来展望。

售       价:¥

纸质售价:¥66.20购买纸书

292人正在读 | 0人评论 6.2

作       者:张若非 等

出  版  社:电子工业出版社有限公司

出版时间:2019-09-01

字       数:16.4万

所属分类: 科技 > 计算机/网络 > 软件系统

温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印

为你推荐

  • 读书简介
  • 目录
  • 累计评论(0条)
  • 读书简介
  • 目录
  • 累计评论(0条)
本书作者都是微软人工智能及研究院的研究人员和应用科学家,具有深厚的机器学习背景,在一线针对产品需求和支持的场景行了大量的深度学习模型及算法的研究和发,在模型设计、训练、评估、部署、推理优化等模型发全生命周期积累了丰富的经验。 本书分为4 部分,共13 章。其中第1 部分(第1、2 章)简要介绍了深度学习的现状、概念和实现工具。第2 部分(第3~5 章)以具体的实际应用展示基于深度学习技术行工程实践和发的流程和技巧。第3 部分(第6~12 章)介绍了学术界和工业界*的高阶深度学习模型的实现和应用。第4 部分(第13章)介绍了深度学习领域的一些前沿研究方向,并对深度学习的未来发展行展望。 本书面向的读者是希望学习和运用深度学习模型到具体应用场景的企业工程师、科研院所的学生和科研人员。读者学习本书的目的是了解深度学习模型和算法基础后,快速部署到自己的工作领域,并取得落地成果。  <br/>【推荐语】<br/>突出应用和实践成果 本书面向的读者是学习和运用深度学习模型到具体应用场景的企业工程师、科研院所的学生和科研人员。目的是对深度学习模型和算法有了解后,重应用和实践及快速部署在他们工作的领域并希望取得落地成果。 内容讲解由浅深 本书*部分第二部分是基础,介绍了深度学习理论和常用工具及常见的深度学习模型。 第三部分是阶内容,讲解应用于计算机视觉、自然语言处理及理解、和决策任务的高级深度学习模型。第四部分是工程实践、在线推理优化和未来展望。 高阶模型的应用分享 学术界和工业界*的高阶深度学习模型和实现及他们在互联网搜索、广告、对话机器人、电商等领域的应用。包括用于对话机器人的DeepProbe模型,用于单张照片产品识别和属性生成的VPR模型,用于信息检索和语义向量生成的DeepIntent模型,用于文本语义嵌和匹配的FastText模型,生成对抗网络模型(GAN)以及它在图像生成和自然语言处理中的应用,强化学习模型的模型结构、训练算法和应用。这些模型和实现都已经应用在微软的众多产品中,获得了很好的效果。<br/>【作者】<br/>张若非 美国纽约州立大学计算机科学博士。微软(美国)人工智能与研究院高级研究总监,全球合伙人,负责微软在线广告平台机器学习模型、算法及系统的研究和建设。研究领域包括机器学习、数据挖掘、自然语言处理、计算机视觉和多媒体信息检索。在这些领域的一流学术期刊和学术会议发表论文50余篇,获得美国发明专利12项。美国国家自然科学基金会(NSF)智能系统评审委员会委员,IEEE和ACM高级会员。 付 强 博士毕业于清华大学电子工程系,现任微软(美国)搜索广告部资深应用科学家,主要从事机器学习、深度学习、信息检索、自然语言理解、图像处理等方面的算法研究及其在搜索广告产品中的应用。此前曾任微软亚洲研究院研究员,研究将机器学习算法用于云计算平台的系统建模、性能优化,以及故障自动诊断。在机器学习、数据挖掘、计算机系统等领域的国际会议及期刊上共发表论文30余篇,持有4项美国专利。 高 斌 博士毕业于北京大学数学科学学院,现任微软(美国)搜索广告部资深机器学习科学家,此前曾担任微软亚洲研究院机器学习研究组主管研究员。主要从事机器学习、信息检索、数据挖掘和计算广告等领域的研究和发。在国际期刊和会议上发表相关论文40余篇,并持有30余项美国专利。主持研发的十余项创新技术已经被应用于必应搜索引擎、必应搜索广告及微软小冰等产品中。 张耿豪 博士毕业于美国加州大学伯克利分校,现任微软(美国)搜索广告部资深应用科学家。主要专注于机器学习、自然语言处理、信息检索、人机界面等领域,并且在微软负责必应搜索广告业务及多项延伸的应用与研究,例如聊天机器人、以图搜图等。在国际期刊和会议上发表相关论文20余篇,并持有3项美国专利。 叶 挺 硕士毕业于北京大学软件工程研究所,现任微软(美国)搜索广告部工程师,主要从事深度学习算法的性能优化和分布式实现,成功将多个深度学习模型应用于必应的广告服务中。在计算机会议KDD、ASE发表论文3篇,并取得发明专利3项。<br/>
目录展开

开始

累计评论(0条) 0个书友正在讨论这本书 发表评论

发表评论

发表评论,分享你的想法吧!

买过这本书的人还买过

读了这本书的人还在读

回顶部