万本电子书0元读

万本电子书0元读

顶部广告

多主体强化学习协作策略研究电子书

多主体的研究与应用是近年来备受关注的热点领 域,多主体强化学习理论与方法、多主体协作策略的 研究是该领域重要研究方向,其理论和应用价值极为 广泛,备受广大从事计算机应用、人工智能、自动控 制、以及经济管理等领域研究者的关注。

售       价:¥

纸质售价:¥37.90购买纸书

125人正在读 | 1人评论 6.2

作       者:孙若莹,赵刚

出  版  社:清华大学出版社

出版时间:2014-08-01

字       数:26.8万

所属分类: 科技 > 计算机/网络 > 软件系统

温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印

为你推荐

  • 读书简介
  • 目录
  • 累计评论(1条)
  • 读书简介
  • 目录
  • 累计评论(1条)
多主体的研究与应用是近年来备受关注的热领 域,多主体强化学习理论与方法、多主体协作策略的 研究是该领域重要研究方向,其理论和应用价值极为 广泛,备受广大从事计算机应用、人工智能、自动控 制、以及经济管理等领域研究者的关注。孙若莹、赵 刚所著的《多主体强化学习协作策略研究》清晰地介 绍了多主体、强化学习及多主体协作等基本概念和基 础内容,明确地阐述了有关多主体强化学习、协作策 略研究的发展过程及*动向,深地探讨了多主体 强化学习与协作策略的理论与方法,具体地分析了多 主体强化学习与协作策略在相关研究领域的应用方法 。      全书系统脉络清晰、基本概念清楚、图表分析直 观,注重内容的体系化和实用性。通过本书的阅读和 学习,读者即可掌握多主体强化学习及协作策略的理 论和方法,更可了解在实际工作中应用这些研究成果 的手段。本书可作为从事计算机应用、人工智能、自 动控制、以及经济管理等领域研究者的学习和阅读参 考,同时高等院校相关专业研究生以及人工智能爱好 者也可从中获得借鉴。<br/>
目录展开

About the Authors

Preface

Chapter 1 Introduction

1.1 Reinforcement Learning

1.1.1 Generality of Reinforcement Learning

1.1.2 Reinforcement Learning on Markov Decision Processes

1.1.3 Integrating Reinforcement Learning into Agent Architecture

1.2 Multiagent Reinforcement Learning

1.2.1 Multiagent Systems

1.2.2 Reinforcement Learning in Multiagent Systems

1.2.3 Learning and Coordination in Multiagent Systems

1.3 Ant System for Stochastic Combinatorial Optimization

1.3.1 Ants Forage Behavior

1.3.2 Ant Colony Optimization

1.3.3 MAX-MIN Ant System

1.4 Motivations and Consequences

1.5 Book Summary

Bibliography

Chapter 2 Reinforcement Learning and Its Combination with Ant Colony System

2.1 Introduction

2.2 Investigation into Reinforcement Learning and Swarm Intelligence

2.2.1 Temporal Differences Learning Method

2.2.2 Active Exploration and Experience Replay in Reinforcement Learning

2.2.3 Ant Colony System for Traveling Salesman Problem

2.3 The Q-ACS Multiagent Learning Method

2.3.1 The Q-ACS Learning Algorithm

2.3.2 Some Properties of the Q-ACS Learning Method

2.3.3 Relation with Ant-Q Learning Method

2.4 Simulations and Results

2.5 Conclusions

Bibliography

Chapter 3 Multiagent Learning Methods Based on Indirect Media Information Sharing

3.1 Introduction

3.2 The Multiagent Learning Method Considering Statistics Features

3.2.1 Accelerated K-certainty Exploration

3.2.2 The T-ACS Learning Algorithm

3.3 The Heterogeneous Agents Learning

3.3.1 The D-ACS Learning Algorithm

3.3.2 Some Discussions about the D-ACS Learning Algorithm

3.4 Comparisons with Related State-of-the-arts

3.5 Simulations and Results

3.5.1 Experimental Results on Hunter Game

3.5.2 Experimental Results on Traveling Salesman Problem

3.6 Conclusions

Bibliography

Chapter 4 Action Conversion Mechanism in Multiagent Reinforcement Learning

4.1 Introduction

4.2 Model-Based Reinforcement Learning

4.2.1 Dyna-Q Architecture

4.2.2 Prioritized Sweeping Method

4.2.3 Minimax Search and Reinforcement Learning

4.2.4 RTP-Q Learning

4.3 The Q-ac Multiagent Reinforcement Learning

4.3.1 Task Model

4.3.2 Converting Action

4.3.3 Multiagent Cooperation Methods

4.3.4 Q-value Update

4.3.5 The Q-ac Learning Algorithm

4.3.6 Using Adversarial Action Instead of ε Probability Exploration

4.4 Simulations and Results

4.5 Conclusions

Bibliography

Chapter 5 Multiagent Learning Approaches Applied to Vehicle Routing Problems

5.1 Introduction

5.2 Related State-of-the-arts

5.2.1 Some Heuristic Algorithms

5.2.2 The Vehicle Routing Problem with Time Windows

5.3 The Multiagent Learning Applied to CVRP and VRPTW

5.4 Simulations and Results

5.5 Conclusions

Bibliography

Chapter 6 Multiagent learning Methods Applied to Multicast Routing Problems

6.1 Introduction

6.2 Multiagent Q-learning Applied to the Network Routing

6.2.1 Investigation into Q-routing

6.2.2 AntNet Investigation

6.3 Some Multicast Routing in Mobile Ad Hoc Networks

6.4 The Multiagent Q-learning in the Q-MAP Multicast Routing Method

6.4.1 Overview of the Q-MAP Multicast Routing

6.4.2 Join Query Packet, Join Reply Packet and Membership Maintenance

6.4.3 Convergence Proof of Q-MAP Method

6.5 Simulations and Results

6.6 Conclusions

Bibliography

Chapter 7 Multiagent Reinforcement Learning for Supply Chain Management

7.1 Introduction

7.2 Related Issues of Supply Chain Management

7.3 SCM Network Scheme with Multiagent Reinforcement Learning

7.3.1 SCM with Multiagent

7.3.2 The RL Agents in SCM Network

7.4 Application of the Q-ACS Method to SCM

7.4.1 The Application Model in SCM

7.4.2 The Q-ACS Learning Applied to the SCM System

7.5 Conclusion

Bibliography

Chapter 8 Multiagent Learning Applied in Supply Chain Ordering Management

8.1 Introduction

8.2 Supply Chain Management Model

8.3 The Multiagent Learning Model for SC Ordering Management

8.4 Simulations and Results

8.5 Conclusions

Bibliography

累计评论(1条) 1个书友正在讨论这本书 发表评论

发表评论

发表评论,分享你的想法吧!

买过这本书的人还买过

读了这本书的人还在读

回顶部