售 价:¥
温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印
为你推荐
Table of Contents
Foreword
Recommendations
1. Data Mining in General
1.1. Why Data Mining?
1.2. Technology for Uncovering Hidden Information
1.3. Pitfalls and Difficulties
1.3.1. Popular Beliefs About Data Mining
1.3.2. Analytical Booby Traps
Ideal Types
Siren Voices of the Mining Tool
Non-usable Rules
Overfitting
1.4. Data Mining and Business
Business Understanding
Expertise
1.4.1. Tools
1.4.2. Business Value
1.4.2. Defining the Business Objective
1.5. Data Mining and Statistics
1.6. Data Mining and Conventional Data Analytics
1.7. Data Mining and Manual Analysis
1.8. Business Value in an Ocean of Data
1.9. The Structure of This Book
1.10. The Authors of This Book
2. Business Intelligence and Data Warehouses
2.1. Business Intelligence (BI)
2.1.1. Positioning of Data Mining Within the BICC
2.1.2. The Future of BI
2.2. Data Warehouses. From Source Systems to Data Mining — Data Warehouses and Data Marts
2.2.1. OLTP
2.2.2. Data Warehouse – The Basics
2.2.3. Subject Orientation
2.2.4. Integration
2.2.5. Storing Data from Several Periods
2.2.6. Non-volatility
2.2.7. Accessibility
2.2.8. Transformation
2.2.9. Management-driven
2.2.10. Sources for a Data Warehouse
2.2.11. How Does Data Reach the Data Warehouse?
2.2.12. Normalization, Denormalization and Redundancy
2.2.13. Data Warehouse – Central Layer
2.3. Metadata
2.3.1. Metadata
2.3.2. Metadata Storage
2.3.3. Requirements for a Metadata Maintenance Tool
2.4. Exploitation
2.4.1. Data Marts
2.4.2. Analytical Data Layers
2.5. OLAP
2.6. Other Exploitation Technologies
3. Lessons from Data Warehousing Projects
3.1.Establishing a Corporate Data Warehouse
3.1.1. The Goals of Implementing a Data Warehouse
3.1.1.1. Long-term Objectives of Data Warehouse Implementation
3.1.1.2. Short-Term Objectives of Implementing the Data Warehouse
3.2.1. Definition of Successful Data Warehouse Implementation
3.1.3. Risks
3.1.4. Reasons for Data Warehouse Project Failures
3.2. The Conditions Necessary for a Successful Implementation
3.2.1. Establishing a BI Strategy As the First Step of the Implementation
3.2.2. Ongoing Support from Senior Management, Strong Sponsor
3.2.3. Iterative Implementation
3.2.4. Implementation As a Common Task for Business Units and IT
3.2.4.1. Users Have a Key Role During Implementation
3.2.4.2. Selecting Key Users
3.2.4.3. Documentation
3.2.4.4. Applications
3.2.5. Unified Concepts, Data Quality
3.2.6. Continuous Management of User Expectations, Publication of Results
3.2.7. Establishing a BICC, a Team of Professionals, IT Operatives and a User Support Team
4. The Methodology of Data Mining Projects
4.1. Data Mining Projects
4.2. Business-Oriented View
4.3. Methodologies
4.3.1. CRISP-DM Methodology
Business Understanding
Data Understanding
Data Preparation
Modelling
Evaluation
Deployment
4.3.2. The Time Requirements of Project Steps
4.4. Success Factors for Data Mining
4.4.1. Asking the Right Question
4.4.2. Giving the Right Answer
4.4.3. Feedback
4.4.4. Consultation
5. A Typical Data Mining Problem: Predictive Modelling
5.1. Predicting the Future
5.1.1. Predictive Modelling
5.1.2. A Predictive Modelling Example
5.2. The Predictive Modelling Process
5.3. The Purpose of Predictive Modelling
5.4. Scorecard
5.5. Making Predictions Based on the Past
5.6. Setting up an Analytical Environment, Collecting Data and Definitions
5.7. Examining and Understanding the Data
5.7.1. Exploration of the Data
5.7.2. Examining Relationships
5.8. Data Modification, Preparing Data for Modelling, Modelling
5.8.1. Machine Learning
5.8.2. New Dimensions, New Distributions
5.8.3. Binning for More Accurate Model Fitting
5.8.4. Binning Techniques
5.9. Building and Applying the Model
5.9.1. Variable Selection
5.9.2. The Predictive Model and Its Evaluation
5.10. Applying the Final Model
6. Segmentation
6.1. The Purpose of Segmentation
6.2. Customer Segmentation
6.3. Elements of Customer Segmentation
6.3.1. Master Data
6.3.2. Customer Behaviour
6.4. Preparation of Data
6.5. Segmentation Base Table
6.6. Segmentation and Profiling
6.7. Segment Creation Methods
6.7.1. Clustering
6.7.2. The Disadvantages of Clustering
6.7.3. Cube-Based Segmentation
6.7.4. Segmentation Supported by Decision Trees
6.7.5. Anticipated Segmentation
6.8. Operating the Segmentation
7. Behaviour Prediction (Early Warning)
7.1. Another Task for Predictive Data Mining
7.1.1. Behaviour, and How It Is Influenced
7.1.2. Who? — The Client
7.1.3. What? — The Forms of Behaviour
7.1.4. When? — The Timing
7.1.5. Why? — Finding the Reasons
7.2. Exploring Behaviour
7.2.1. What Is Behaviour?
7.2.2. An Example of Churn Analysis
7.3. Time Series: The Foundation of Behaviour Modelling
7.3.1. Time Series
7.3.2. Seasonal Effects
7.3.3. Campaign Effects
7.3.4. Time Series Matching
7.3.5. Stability Analysis
7.4. Behaviour Modelling: The Practice
7.4.1. Analytical Base Table
7.4.2. Modelling
7.4.3. Model Assessment
8. Campaign Optimization
8.1. Why Should Marketing Campaigns Be Optimized?
8.2. The Business Goal of Campaigns
8.3. The Main Question for Campaign Optimization
8.4. Planning Campaigns
8.5. Campaign Interactions
8.6. The Utility Score
8.6.1. Income
8.6.2. Risk
8.6.3. Channel Preference
8.6.4. Client Value
8.6.5. Product Affinity
8.6.6. Churn Probability
8.6.7. Campaign History
8.6.8. Campaign Sensitivity
8.6.9. The Utility Scorecard
8.7. Excessive Communication and Exclusion
8.8. Constraints
8.8.1. Quotas
8.8.2. Channels
8.9. Allocation of Offers
8.10. The Optimal Allocation
8.10.1. Definition of the Problem
8.10.2. The Mathematical Background to Optimal Allocation
8.10.3. Problems with Optimal Allocation
8.10.4. The Sub-optimal Algorithm
8.10.5. Dates and Channels
8.10.6. Handling Exclusions and Constraints
8.10.7. An Example
8.10.8. Why Is Using the ‘Greedy Algorithm’ Not Optimal for Utility Scores?
8.10.9. The Sub-optimal Algorithm in Detail
8.10.10. Preliminary Exclusion
8.10.11. Allocation
8.10.12. Reports
8.10.12.1. Statistics
8.10.12.2. Channel Usage
8.10.12.3. Comparing Excluded and Allocated Offers
8.11. Summary
9. The Implications of Data Quality
9.1. The Business Implications of Data Quality
9.2. Data Quality Issues
9.2.1. Data Quality Requirements
9.2.2. Reference Points
9.2.3. Risks
9.3. Improving Data Quality
9.3.1. Processing Data Errors
9.3.2. Data Exploration
9.3.3. Data Profiles
9.3.4. Data Standards
9.3.5. The Life Cycle of Data Errors
9.3.6. Background Processing
9.3.7. Online Solutions
9.4. Methodologies and Algorithms for Data Cleaning
9.4.1. Cleaning Data
9.4.2. Error Characteristics: Types of Data Cleaning Errors
9.4.3. Data Flaws and Psychology
9.4.3.1. Normalisation
9.4.3.2. Pair Matching
9.4.3.3. Group Evaluation
9.4.4. Manual Verification
9.4.5. Master Records
9.5. Back-Testing
9.6. An Example of Cleaning of Master Data: A Register of Prisoners of World War II
9.6.1. Contraction
9.6.2. Normalisation
9.6.3. Classification of Pairs
10. Networks for Business Purposes
10.1. Network Perspective
10.2. About Networks
10.2.1. What Is a Network?
10.2.2. Network Types
10.2.2.1. Connectivity
10.2.2.2. Type of Nodes and Edges
10.2.2.3. The Orientation of Edges
10.2.2.4. Network Topology
10.2.2.5. Edge Weight
10.3. Business Use of Networks
10.3.1. Networks and BI
10.3.2. Applications
10.3.2.1. Sales, Cross-selling
10.3.2.2. Risk and Fraud Analysis
10.3.2.3. Churn Analysis
10.3.2.4. Other Applications
10.4. Defining Networks
10.4.1. Defining Nodes
10.4.1.1. Identification
10.4.1.2. Typifying
10.4.1.3. Attributes
10.4.2. Edge Definition
10.4.2.1. Identification
10.4.2.2. Typifying
10.4.2.3. Attributes
10.5. Preparing Network Data
10.5.1. Challenges of Tabular Data Storage
10.5.2. External Data Sources
10.5.3. Data Quality Matters Within Networks
10.5.3.1. Identification of Nodes
10.5.3.2. Identification of Edges
10.5.3.3. Matching Internal and External Data
10.5.4. Sampling Network Data
10.6. Visualisation
10.6.1. Visual Features of Edges and Nodes
10.6.2. Features of Good Visualisation
10.6.3. Functions Required of a Visualisation Tool
10.6.4. Animating Changes in the Network
10.7. Analysis
10.7.1. Basic Analytics: Indicators and Metrics
10.7.1.1. Environmental Statistics
10.7.1.2. Key Actors and Groups
10.7.2. Advanced Analytics
10.7.2.1. Path Search
10.7.2.2. Structures
10.7.3. Network Analysis Tool
10.8. Network Simulation
10.9. Storing Network Data
10.9.1. Storage in a Relational Database
10.9.2. Storing in Memory
10.9.3. Graph Databases
11. Outlook
11.1. Industrial and Commercial Applications
11.1.1. The Steel Converter and Empirical Knowledge
11.1.2. Data and Databases for Hot Rolling
11.2. Agricultural Applications
11.2.1. Satellite-Based Crop Estimation
11.2.1.1. A Method for Detailed Crop Yield Estimations
11.2.1.2. A Method for Robust Crop Yield Estimations
11.2.2. Pest Prediction
11.2.3. Wine and Bayesian Networks
11.2.4. Cows and Numbers
11.2.5. Agricultural Scenarios
11.2.6. Possibilities for Optimization
11.3. Service and Trade
11.3.1. Applications of Pattern and Sequence Finding
11.3.2. Applications in Logistics
11.3.3. Product Recommendation
11.4. Other Areas of Interest
11.4.1. Counterterrorism
11.4.2. Healthcare
11.4.3. Data Mining Competitions
Notes
Bibliography
Data Mining
Data Warehouses
Data Warehouse Projects
Predictive Modelling
Campaign Optimization
Data Quality
Networks
Outlook
Index
A
B
C
D
E
F
G
H
I
L
M
N
O
P
R
S
T
U, V, W
Introductions
买过这本书的人还买过
读了这本书的人还在读
同类图书排行榜