万本电子书0元读

万本电子书0元读

顶部广告

Python深度学习与项目实战电子书

1.全方位解读深度学习五大主流与前沿技术; 2.理论与实战紧密结合,通过足够多的实际项目帮助读者; 3.知识全面,详解深度学习模型在计算机视觉、自然语言处理、金融、强化学习等众多领域的新展和应用; 4.悉尼大学Basem Suleiman和Johan Alibasa以及伦敦大学玛丽女王学院Soren Riis等多位世界名校教师联袂推荐。

售       价:¥

纸质售价:¥58.80购买纸书

102人正在读 | 0人评论 6.2

作       者:周北

出  版  社:人民邮电出版社有限公司

出版时间:2021-02-01

字       数:20.7万

所属分类: 科技 > 计算机/网络 > 程序设计

温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印

为你推荐

  • 读书简介
  • 目录
  • 累计评论(0条)
  • 读书简介
  • 目录
  • 累计评论(0条)
本书基于Python以及两个深度学习框架Keras与TensorFlow,讲述深度学习在实际项目中的应用。本书共10章,首先介绍线性回归模型、逻辑回归模型、Softmax多分类器,然后讲述全连神经网络、神经网络模型的优化、卷积神经网络、循环神经网络,*后讨论自编码模型、对抗生成网络、深度强化学习。本书结合计算机视觉、自然语言处理、金融领域等方面的项目,系统讲述深度学习技术,可操作性强。<br/>【推荐语】<br/>1.全方位解读深度学习五大主流与前沿技术; 2.理论与实战紧密结合,通过足够多的实际项目帮助读者; 3.知识全面,详解深度学习模型在计算机视觉、自然语言处理、金融、强化学习等众多领域的新展和应用; 4.悉尼大学Basem Suleiman和Johan Alibasa以及伦敦大学玛丽女王学院Soren Riis等多位世界名校教师联袂推荐。<br/>【作者】<br/>周北,重庆韬翔网络科技有限公司总裁,悉尼大学研究生,人工智能领域资深技术专家,自2018年被任命为韬翔科技董事长以来,主要负责公司亚太地区与欧洲事业群的管理,曾任职于悉尼大学并担任计算机科学学院科研助理的工作。他具有信息技术和信息技术管理专业的双学位,是上海企觉有限公司首席技术顾问,擅长机器学习、深度学习、Python、Java等技术。<br/>
目录展开

版 权

内容提要

前 言

服务与支持

第一部分 基础知识

第1章 线性回归模型

1.1 线性回归详解

1.1.1 数据集的构建

1.1.2 线性回归模型的构建

1.1.3 损失函数详解

1.2 梯度下降算法

1.3 求损失函数的最小值

1.4 线性回归代码实战

1.4.1 线性回归模型的构建与训练

1.4.2 复杂线性回归模型的构建

1.4.3 使用正则项防止过拟合

1.5 线性回归项目实战

1.5.1 波士顿房价数据集简介

1.5.2 数据集特征值的标准化

1.5.3 线性回归模型的构建与训练

1.6 本章小结

第2章 逻辑回归模型

2.1 逻辑回归详解

2.1.1 Sigmoid函数

2.1.2 逻辑回归模型的工作原理

2.1.3 损失函数的构建

2.1.4 二元交叉熵函数的代码实战

2.1.5 求模型的最优参数

2.2 逻辑回归项目实战

2.2.1 泰坦尼克数据集简介

2.2.2 数据集的加载

2.2.3 模型的构建与训练

2.2.4 模型的评估

2.2.5 使用矩阵的方式加速模型的训练

2.3 逻辑回归模型与神经网络的联系

2.4 本章小结

第3章 Softmax多分类器

3.1 Softmax函数详解

3.2 Softmax多分类器详解

3.2.1 独热编码详解

3.2.2 Softmax多分类器工作原理

3.2.3 多元交叉熵函数详解

3.2.4 多元交叉熵函数的代码实战

3.3 数据集的预处理

3.3.1 MNIST数据集详解

3.3.2 数据集特征值的归一化

3.3.3 图片的扁平化

3.3.4 标签值的独热编码处理

3.4 Softmax多分类器实战

3.4.1 MNIST数据集的加载与预处理

3.4.2 Softmax多分类器模型的构建

3.4.3 Softmax多分类器模型的训练

3.5 本章小结

第二部分 进阶技术

第4章 全连接神经网络

4.1 深度学习与神经网络简介

4.2 全连接神经网络

4.3 激活函数

4.3.1 Sigmoid函数

4.3.2 tanh函数

4.3.3 ReLU函数

4.3.4 Softmax函数

4.4 模型参数的初始化

4.4.1 初始化为常数

4.4.2 随机初始化模型参数

4.4.3 模型参数初始化实战

4.5 模型的训练与损失函数

4.5.1 模型的训练过程

4.5.2 损失函数的定义

4.6 梯度下降算法

4.6.1 反向传播算法

4.6.2 3种梯度下降算法的计算方式

4.6.3 梯度下降优化算法

4.7 MNIST手写数字识别实战——分类项目

4.7.1 深度学习项目中数据集的划分

4.7.2 MNIST手写数字识别项目

4.8 房价数据回归分析——回归分析项目

4.9 本章小结

第5章 神经网络模型的优化

5.1 防止过拟合的方法

5.1.1 L1/L2正则化

5.1.2 增加训练集样本个数

5.1.3 Dropout的应用

5.1.4 早停法

5.2 批量标准化

5.3 CIFAR-10数据集分类项目实战

5.3.1 CIFAR-10数据集简介

5.3.2 模型的构建与训练

5.4 模型的使用、保存与加载

5.4.1 使用模型进行预测

5.4.2 保存训练好的模型

5.4.3 加载模型

5.5 Keras 中的函数式API

5.6 本章小结

第6章 卷积神经网络

6.1 卷积神经网络结构

6.2 应用CNN模型对MNIST数据集分类

6.2.1 图片的表示形式

6.2.2 MNIST数据集的分类

6.3 卷积层

6.3.1 卷积层的工作原理

6.3.2 实现卷积层的代码

6.3.3 补零

6.4 池化层

6.4.1 池化层的工作原理

6.4.2 池化层对图片的作用

6.5 应用CNN模型对CIFAR-10数据集图片分类

6.6 猫与狗数据集分类项目实战

6.6.1 猫与狗数据集简介

6.6.2 数据集的预处理

6.6.3 模型的构建与训练

6.7 经典的CNN模型

6.7.1 VGG网络模型

6.7.2 ResNet模型

6.7.3 Inception网络模型

6.8 迁移学习

6.8.1 迁移学习的原理

6.8.2 迁移学习项目实战

6.9 本章小结

第7章 循环神经网络

7.1 时间序列数据详解

7.2 自然语言数据的处理

7.2.1 词的向量化表示

7.2.2 词汇标记化

7.2.3 序列填充

7.2.4 嵌入层的原理与应用

7.3 情感分析项目

7.3.1 情感分析项目简介

7.3.2 数据集的处理

7.4 简单RNN

7.4.1 简单RNN的原理

7.4.2 简单RNN的应用

7.4.3 简单RNN项目实战

7.5 长短期记忆神经网络

7.5.1 长短期记忆神经网络的原理

7.5.2 长短期记忆神经网络的应用

7.6 门控循环神经网络

7.6.1 门控循环神经网络的原理

7.6.2 门控循环神经网络的应用

7.7 RNN进阶

7.7.1 RNN中防止过拟合的方式

7.7.2 叠加长短期记忆神经网络

7.7.3 双向长短期记忆神经网络

7.7.4 注意力模型

7.8 文本生成项目

7.9 某公司股票价格预测项目

7.9.1 数据集的预处理

7.9.2 模型的构建与训练

7.9.3 可视化预测的股票开盘价格与实际的股票开盘价格

7.10 自然语言处理技术新进展

7.10.1 迁移学习在自然语言处理中的应用

7.10.2 ELMo模型介绍与实战应用

7.10.3 BERT模型介绍与实战应用

7.10.4 GPT-2模型介绍

7.11 本章小结

第三部分 高级技术

第8章 自编码模型

8.1 自编码模型的原理详解

8.2 应用自编码模型对数据降维

8.3 应用自编码模型进行异常检测

8.3.1 异常检测的原理

8.3.2 检测信用卡异常交易

8.4 应用自编码模型对图片去噪

8.4.1 项目介绍

8.4.2 反卷积的原理与应用

8.4.3 上采样的原理与应用

8.4.4 实现图片去噪项目

8.5 本章小结

第9章 生成对抗网络

9.1 生成对抗网络的原理

9.1.1 生成对抗网络的工作原理简介

9.1.2 生成器与判别器的工作原理

9.1.3 生成对抗网络模型的训练

9.2 生成对抗网络模型的训练技巧

9.2.1 梯度值剪裁

9.2.2 批量标准化中的动量

9.3 项目实战

9.3.1 数据集介绍与加载

9.3.2 判别器模型的构建

9.3.3 生成器模型的构建

9.3.4 生成对抗网络模型的构建

9.3.5 生成对抗网络模型的训练

9.4 本章小结

第10章 深度强化学习

10.1 深度强化学习简介

10.2 深度强化学习详解

10.3 Deep Q-Learning算法

10.3.1 Q-Learning算法详解

10.3.2 Deep Q-Learning算法详解

10.3.3 Deep Q-Learning算法的应用

10.4 策略梯度算法

10.4.1 策略梯度算法原理详解

10.4.2 策略梯度算法项目实战

10.5 演员-评判家算法

10.5.1 演员-评判家算法原理详解

10.5.2 演员-评判家项目实战

10.6 本章小结

累计评论(0条) 0个书友正在讨论这本书 发表评论

发表评论

发表评论,分享你的想法吧!

买过这本书的人还买过

读了这本书的人还在读

回顶部