趣味图解统计分析方法! 1.系统梳理362个基础概念,网罗统计学基础知识,内容丰富 2.配有507张插图帮助理解,直观易懂,趣味性强 3.使用R语言实现电子表格软件中无法实现的分析方法,帮助读者轻松上手 如果把科学比作语言,那么统计学就是对语言来说不可或缺的语法。--现代统计学奠基人 卡尔·皮尔逊
售 价:¥
纸质售价:¥52.00购买纸书
温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印
为你推荐
前言
序章 统计学概述
0.1 何谓统计学
0.2 统计学可以做什么
第 1 章 描述统计学
1.1 各种平均数
1.2 数据的离散程度①:~分位数和方差~
1.3 数据的离散程度②:~变异系数~
1.4 变量的关联性①:~相关系数~
1.5 变量的关联性②:~等级相关~
第 2 章 概率分布
2.1 概率和概率分布
2.2 概率相等的分布:~均匀分布~
2.3 抛硬币的分布:~二项分布~
2.4 钟形分布:~正态分布~
2.5 无单位的分布:~标准正态分布~
2.6 掌握数据的位置:~σ 区间~
2.7 分布的形态:~偏度和峰度~
2.8 随机事件的分布:~泊松分布~
2.9 同时处理多个数据:~卡方分布~
2.10 卡方值的比:~F 分布~
2.11 代替正态分布:~ 分布~
第 3 章 推断统计学
3.1 通过样本获取总体的特征:~推断统计学~
3.2 巧妙估计总体参数:~无偏估计~
3.3 不受限制的数据个数:~自由度~
3.4 样本统计量的分布①:~平均数的分布~
3.5 样本统计量的分布②:~比例的分布~
3.6 样本统计量的分布③:~方差的分布~
3.7 样本统计量的分布④:~相关系数的分布~
3.8 与真值的差异:~系统误差和随机误差~
3.9 关于样本均值的两大定理:~大数定律和中心极限定理~
第 4 章 置信区间估计
4.1 有范围的估计①:~总体均值的置信区间~
4.2 有范围的估计②:~总体比例的置信区间~
4.3 有范围的估计③:~总体方差的置信区间~
4.4 有范围的估计④:~总体相关系数的置信区间~
4.5 通过模拟来估计总体参数:~自助法~
第 5 章 假设检验
5.1 判断是否存在差异:~假设检验~
5.2 两种假设:~零假设和备择假设~
5.3 假设检验的步骤
5.4 指定的值(总体均值)和样本均值的检验
5.5 假设检验中的两类错误:~第一类错误和第二类错误~
5.6 指定的值(总体比例)和样本比例的检验
5.7 指定的值(总体方差)和样本方差的检验
5.8 真的有相关关系吗?:~不相关检验~
5.9 平均数差异的检验①:~两独立样本的情形~
5.10 平均数差异的检验②:~两配对样本的情形~
5.11 比例之差的检验:~两独立样本的情形~
5.12 检验非劣效:~非劣效性试验~
第 6 章 方差分析和多重比较
6.1 用实验确认效应:~单因素方差分析~
6.2 多个样本的等方差检验:~Bartlett 检验~
6.3 考虑个体差异:~配对的单因素方差分析~
6.4 找出交互作用:~双因素方差分析~
6.5 不可以重复检验:~多重性~
6.6 可重复的检验(多重比较法)①:~Bonferroni 校正法和 Scheffe 法~
6.7 可重复的检验(多重比较法)②:~Tukey 法和 Tukey-Kramer 法~
6.8 可重复的检验(多重比较法)③:~Dunnett 法~
第 7 章 非参数方法
7.1 不依赖于分布的检验:~非参数方法~
7.2 品质数据的检验:~独立性检验(皮尔逊卡方检验)~
7.3 2×2 交叉表的检验:~Fisher 确切概率法~
7.4 独立的两组定序数据的检验:~曼 - 惠特尼 检验~
7.5 配对的两组定序数据的检验:~符号检验~
7.6 配对的两组数值型数据的非参数检验:~威尔科克森符号秩检验~
7.7 独立的多组定序数据的检验:~Kruskal-Wallis 检验~
7.8 配对的多组定序数据的检验:~Friedman 检验~
第 8 章 实验设计法
8.1 费歇尔三原则①:~重复~
8.2 费歇尔三原则②:~随机化~
8.3 费歇尔三原则③:~局部控制~
8.4 各种实验配置
8.5 减少实验次数:~正交实验法~
8.6 正交实验法的应用①:~质量工程学(参数设计)~
8.7 正交实验法的应用②:~联合分析~
8.8 样本容量的确定方法:~功效分析~
第 9 章 回归分析
9.1 探究因果关系:~回归分析~
9.2 将数据套用到公式中:~最小二乘法~
9.3 评估回归线的精确度:~决定系数~
9.4 检验回归线的斜率:~t 检验~
9.5 判断分析的准确度:~残差分析~
9.6 原因有多个时的回归分析:~多元回归分析~
9.7 自变量之间的问题:~多重共线性~
9.8 选择有效的自变量:~变量选择方法~
9.9 解释实质区别的变量①:~截距虚拟变量~
9.10 解释实质区别的变量②:~斜率虚拟变量~
9.11 二值变量的回归分析:~Probit 分析~
9.12 分析事件发生之前的时间①:~存活曲线~
9.13 分析事件发生之前的时间②:~比较存活曲线~
9.14 分析事件发生之前的时间③:~Cox 回归模型~
第 10 章 多变量分析
10.1 收集信息:~主成分分析~
10.2 发现潜在因素:~因素分析~
10.3 记述因果结构:结构方程模型
10.4 对个体进行分类:~聚类分析~
10.5 分析品质数据的关联性:~对应分析~
第 11 章 贝叶斯统计学和大数据
11.1 活用知识和经验的统计学:~贝叶斯统计学~
11.2 万能公式:~贝叶斯定理~
11.3 根据结果找原因:~后验概率~
11.4 使用新数据提高准确性:~贝叶斯更新~
11.5 大数据分析①:~大数据~
11.6 大数据分析②:~关联分析~
11.7 大数据分析③:~趋势预测和SNS 分析~
附录 A R 的安装和使用方法
统计软件 R
附录 B 统计数值表(分布表)、正交表、希腊字母
作者简介
看完了
买过这本书的人还买过
读了这本书的人还在读
同类图书排行榜