万本电子书0元读

万本电子书0元读

顶部广告

大数据金融与征信电子书

本书主要有以下几个特: 内容全面。 全书以大数据为出发,结合国内外的发展现状及新模式,系统地介绍了大数据在银行业、证券业、保险业、互联网金融行业及征信中的应用,并强调了在应用过程中,中国金融信息安全的重要性及保障机制。本书内容涵盖面极广,有效地为各行各业的读者提供了大数据金融与征信的宏观视图。 体例新颖。 本书秉承着注重实际运用的宗旨,编写体例上彰显了可读性和互动性。每章前有“本章目标”和“本章简介”,每章末有“本章总结”和“课后作业”。书中除了理论教学,还配有相关案例和解析,突出理论与实践相结合,破了传统“罗列发条”的教材编写模式,通俗易懂,拓了学生的视野,更好地满足了培养既懂专业知识又能运用所学知识解决实际问题的“复合型”经济人才的需求。

售       价:¥

纸质售价:¥28.00购买纸书

364人正在读 | 0人评论 6.2

作       者:何平平,车云月

出  版  社:清华大学出版社

出版时间:2017-10-01

字       数:25.9万

所属分类: 经管/励志 > 管理 > 会计/金融投资

温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印

为你推荐

  • 读书简介
  • 目录
  • 累计评论(0条)
  • 读书简介
  • 目录
  • 累计评论(0条)
本书面向金融应用,系统地阐述了大数据金融与征信本身及其在现实生活中的应用,具有全面性、实用性和前瞻性等特色。全书共8章,第1章和第2章阐述大数据金融及大数据技术相关的基础知识问题,是后面章节的基础。第3章至第6章详细介绍大数据在银行业、证券业、保险业及互联网金融行业中的应用,是本书的主要内容。第7章重阐述大数据在征信中的实际应用,是本书的另一重问题,也是当代大数据研究的热问题。第8章特别强调中国金融信息安全,这是大数据金融与征信的发展程中不可避免的问题。本书力争把大数据与其实际应用糅合在一起介绍,力求活学活用。 本书可以作为高等学校互联网金融院系课程教材,也可供互联网金融研究者、从业者、管理人员参考所用。<br/>【推荐语】<br/>本书主要有以下几个特: 内容全面。 全书以大数据为出发,结合国内外的发展现状及新模式,系统地介绍了大数据在银行业、证券业、保险业、互联网金融行业及征信中的应用,并强调了在应用过程中,中国金融信息安全的重要性及保障机制。本书内容涵盖面极广,有效地为各行各业的读者提供了大数据金融与征信的宏观视图。 体例新颖。 本书秉承着注重实际运用的宗旨,编写体例上彰显了可读性和互动性。每章前有“本章目标”和“本章简介”,每章末有“本章总结”和“课后作业”。书中除了理论教学,还配有相关案例和解析,突出理论与实践相结合,破了传统“罗列发条”的教材编写模式,通俗易懂,拓了学生的视野,更好地满足了培养既懂专业知识又能运用所学知识解决实际问题的“复合型”经济人才的需求。<br/>【作者】<br/>车云月,五洲树人教育投资有限公司创始人,知名职教专家,创新型校企合作国内领军人物,“5411”教育理念创始人。担任新迈尔教育集团总裁,中关村加一战略新兴产业人才发展中心主任等职位。在IT类创新和综合性人才培养等方面都做出了突破性的创新。凭借其多年的教育行业从业经验与实干精神,了国内职业教育的新局面。近年来更涉足国际教育领域,力争使我国的职业教育更加国际化,培养更加国际化的专业人才。 何平平,博士,副教授,硕士研究生导师,主持完成国家自然科学基金项目1项,*人文社会科学规划项目1项,省社科基金重项目1项,省科技项目5项,企业委托研究项目2项,出版专著1部,教材1部,发表论文20余篇,现在湖南大学金融与统计学院工作,任湖南大学互联网金融研究所所长。<br/>
目录展开

内容简介

前言

第1章 大数据金融概述

1.1 大数据概述

1.1.1 大数据的内涵与特征

1.1.2 大数据的分类

1.1.3 大数据的价值

1.2 大数据应用领域

1.2.1 商业

1.2.2 通信

1.2.3 医疗

1.2.4 金融

1.3 大数据金融的内涵、特点与优势

1.3.1 大数据金融的内涵

1.3.2 大数据金融的特点

1.3.3 大数据金融相对于传统金融的优势

1.4 大数据带来金融业大变革

1.4.1 大数据带来银行业大变革

1.4.2 大数据带来保险业大变革

1.4.3 大数据带来证券业大变革

1.4.4 大数据带来征信行业大变革

1.4.5 互联网金融中的大数据应用

1.5 大数据金融模式

1.5.1 平台金融模式

1.5.2 供应链金融模式

1.6 大数据金融信息安全

1.7 大数据应用案例

1.7.1 案例之一:滴滴出行

1.7.2 案例之二:大数据与美团外卖的精细化运营

本章总结

本章作业

第2章 大数据相关技术

2.1 大数据处理流程

2.1.1 数据采集

2.1.2 数据预处理

2.1.3 数据存储

2.1.4 数据挖掘

2.1.5 数据解释

2.2 数据来源

2.2.1 核心数据

2.2.2 外围数据

2.2.3 常规渠道数据

2.3 大数据架构

2.3.1 HDFS系统

2.3.2 MapReduce

2.3.3 HBase

2.4 数据挖掘方法

2.4.1 分类分析

2.4.2 回归分析

2.4.3 其他方法

本章总结

本章作业

第3章 大数据在商业银行中的应用

3.1 客户关系管理

3.1.1 客户细分

3.1.2 预见客户流失

3.1.3 高效渠道管理

3.1.4 推出增值服务,提升客户忠诚度

3.1.5 案例——大数据帮助商业银行改善与客户的关系

3.2 精准营销

3.2.1 客户生命周期管理

3.2.2 实时营销

3.2.3 交叉营销

3.2.4 社交化营销

3.2.5 个性化推荐

3.3 信贷管理

3.3.1 贷款风险评估

3.3.2 信用卡自动授信

3.3.3 案例——大数据为商业银行信贷管理提供更多可能

3.4 风险管理

3.4.1 大数据风险控制与传统风险控制的区别

3.4.2 基于大数据的银行风险管理模式

3.4.3 反欺诈

3.4.4 反洗钱

3.5 运营优化

3.5.1 市场和渠道分析优化

3.5.2 产品和服务优化

3.5.3 网络舆情分析

3.5.4 案例——大数据分析助力手机银行优化创新

本章总结

本章作业

第4章 大数据在证券行业中的应用

4.1 大数据在股票分析中的应用

4.1.1 基于基本面分析的数据挖掘方法

4.1.2 基于技术分析的数据挖掘方法

4.1.3 决策树法的应用

4.1.4 聚类分析法的应用

4.1.5 人工神经网络算法的应用

4.2 客户关系管理

4.2.1 客户细分

4.2.2 客户满意度

4.2.3 流失客户预测

4.3 投资情绪分析

4.3.1 投资者情绪的测量

4.3.2 基于网络舆情的投资者情绪分析

4.4 大数据与量化投资

4.4.1 量化投资概述

4.4.2 证券量化投资中的主要分析工具

4.4.3 大数据在证券量化投资中的应用

本章总结

本章作业

第5章 大数据在保险业中的应用

5.1 大数据保险

5.1.1 大数据保险的概念和特征

5.1.2 保险业大数据应用的阶段

5.1.3 大数据在保险行业中的作用

5.1.4 大数据下的数据服务架构

5.1.5 保险业大数据应用现状

5.2 承保定价

5.2.1 大数据与传统保险定价理论

5.2.2 大数据对承保定价的革新

5.2.3 大数据在车险定价中的应用

5.2.4 大数据在健康险定价中的应用

5.3 精准营销

5.3.1 保险精准营销

5.3.2 大数据与保险精准营销

5.3.3 组建垂直平台生态圈

5.3.4 大数据精准营销在保险业中的应用

5.4 欺诈识别

5.4.1 保险欺诈

5.4.2 大数据与保险反欺诈

5.4.3 大数据与车险反欺诈

5.4.4 大数据与健康险的理赔风险

本章总结

本章作业

第6章 互联网金融中的大数据应用

6.1 基于大数据的第三方支付欺诈风险管理

6.1.1 第三方支付中的欺诈风险

6.1.2 大数据应用与欺诈风险防范

6.2 大数据在网络借贷中的应用

6.2.1 推荐系统简述

6.2.2 P2P网站中的个性化推荐

6.2.3 基于VITA系统的信贷产品匹配机制

6.3 大数据在互联网供应链金融中的应用

6.3.1 基于大数据的互联网企业信用评估

6.3.2 案例:京东供应链金融模式

6.4 大数据在互联网消费金融中的应用

6.4.1 互联网消费金融的大数据征信与风控

6.4.2 案例:芝麻信用

本章总结

本章作业

第7章 大数据征信

7.1 传统征信

7.1.1 征信概述

7.1.2 征信的基本流程

7.1.3 征信行业产业链

7.1.4 征信产品

7.1.5 征信机构

7.1.6 征信体系

7.2 大数据征信

7.2.1 大数据征信概述

7.2.2 大数据征信的理论基础

7.2.3 大数据征信流程

7.3 大数据征信典型企业

7.3.1 国外大数据征信典型企业

7.3.2 国内大数据征信典型企业

本章总结

本章作业

第8章 大数据与中国金融信息安全

8.1 金融信息安全的重要性

8.1.1 金融信息安全的含义

8.1.2 金融信息安全的属性特征

8.1.3 金融信息安全的重要性

8.2 大数据给我国金融信息安全带来的机遇和挑战

8.2.1 大数据给金融信息安全带来的机遇

8.2.2 大数据给我国金融信息安全带来的挑战

8.2.3 案例:美国“棱镜门”事件

8.3 大数据金融信息安全风险

8.3.1 大数据金融信息安全风险的类型

8.3.2 大数据金融信息安全风险的特征

8.3.3 国内外金融信息安全事件及事故

8.4 我国金融信息安全现状及制约因素

8.4.1 我国金融信息安全现状

8.4.2 我国金融信息安全的制约因素

8.5 美国金融信息安全保障机制

8.5.1 美国金融信息安全保障机制的特点

8.5.2 美国金融信息安全保障机制的主要做法

8.6 我国金融信息安全建设

8.6.1 完善顶层设计,尽快构建适应我国金融发展需要的金融信息安全保障体系

8.6.2 尽快制定我国金融行业国产信息技术产品和服务替代战略

8.6.3 尽快制定金融行业自主可控战略实施步骤,推进自主可控国家战略

8.6.4 应用大数据进行信息安全分析

本章总结

本章作业

参考文献

累计评论(0条) 0个书友正在讨论这本书 发表评论

发表评论

发表评论,分享你的想法吧!

买过这本书的人还买过

读了这本书的人还在读

回顶部