为你推荐
内容简介
人工智能出版工程丛书编委会
前言
第1章 绪论
1.1 模式的基本概念
1.2 模式表示学习
1.2.1 线性子空间分析
1.2.2 基于流形、稀疏与低秩假设的模式表示
1.3 模式分类
1.3.1 贝叶斯分类器
1.3.2 最小距离分类器
1.3.3 最近邻分类器
1.3.4 BP神经网络
1.3.5 支持向量机
1.3.6分类器组合
1.4 应用算例
1.4.1 手写体数字图像识别
1.4.2 人脸图像识别
参考文献
第2章 线性子空间表示
2.1 主成分分析
2.1.1 基本概念
2.1.2 最小均方误差逼近
2.1.3 PCA变换的统计不相关性
2.1.4 小样本情况下的主成分分析
2.2 线性鉴别分析
2.2.1 基本概念
2.2.2 经典的费希尔线性鉴别与Foley-Sammon线性鉴别方法
2.2.3 具有统计不相关性的线性鉴别分析
2.2.4 相关性分析
2.2.5 等价的最优鉴别向量集
2.2.6 几种等价的费希尔准则
2.3 小样本情况下的线性鉴别分析
2.3.1 两种线性鉴别方法的统一模型
2.3.2 压缩映射基本原理
2.3.3 同构映射基本原理
2.3.4 奇异情况下线性鉴别分析的实质:PCA+LDA
2.3.5 奇异情况下的组合鉴别分析方法
2.4 二维主成分分析
2.5 二维线性鉴别分析
2.5.1 基本思想
2.5.2 Liu图像投影鉴别分析
2.5.3 统计不相关的图像投影鉴别分析
2.5.4 图像鉴别特征抽取方法
2.5.5 相关性分析
2.6 应用算例
2.6.1 主成分分析
2.6.2 线性鉴别分析
2.6.3 小样本情况下的线性鉴别分析
2.6.4 二维主成分分析
2.6.5 二维线性鉴别分析
参考文献
第3章 非线性子空间表示
3.1 核方法的基本思想
3.2 核主成分分析
3.3 核费希尔鉴别分析
3.3.1 基础理论
3.3.2 最优费希尔鉴别向量的搜寻空间
3.3.3 计算费希尔最优鉴别向量的基本思想
3.3.4 简明的KFD算法框架:KPCA+LDA
3.4 完整的KFD算法(CKFD)
3.4.1 抽取两种鉴别信息
3.4.2 两种鉴别信息的融合
3.4.3 完整的KFD算法步骤
3.4.4 与其他KFD方法和LDA方法的关系
3.5 应用算例
3.5.1 在FERET人脸数据集上的实验
3.5.2 在手写体数字CENPARMI数据集上的实验
参考文献
第4章 流形学习
4.1 概述
4.2 非线性嵌入方法
4.2.1 ISOMAP算法
4.2.2 LLE算法
4.2.3 LE算法
4.2.4 LPP算法
4.2.5 NLPP算法
4.2.6 其他非线性嵌入算法
4.3 特殊的黎曼流形
4.3.1 正交矩阵的格拉斯曼流形
4.3.2 非对称正定矩阵的李群流形
4.3.3 对称正定矩阵的李群流形
4.3.4矩阵流形上的降维算法
4.4 流形对齐
4.4.1 无监督流形对齐问题描述
4.4.2 无监督流形的点点对齐
4.4.3 无监督流形的分布对齐
4.5 应用
4.5.1 图像分类
4.5.2 生物识别
4.5.3 域迁移学习
参考文献
第5章 稀疏表示
5.1 稀疏表示的基本算法
5.2 基于稀疏表示的特征抽取
5.2.1 稀疏主成分分析方法
5.2.2 稀疏判别分析方法
5.2.3 稳健联合稀疏嵌入方法
5.3 基于稀疏表示的分类
5.3.1 稀疏系数的作用
5.3.2 表示残差的正则化
5.3.3 稀疏表示分类中的字典学习
5.3.4 扩展的稀疏表示分类
5.4 稀疏表示的典型应用
5.4.1 人脸识别
5.4.2 目标跟踪
5.4.3 视觉显著性检测
参考文献
第6章 低秩模型
6.1 概述
6.2 与核范数有关的RPCA
6.2.1 RPCA和稳健矩阵补全
6.2.2 双核范数的矩阵分解
6.2.3 双核范数的归纳式矩阵分解
6.2.4 显著性检测的一个简单例子
6.3 与核范数有关的LRR
6.3.1 LRR和隐式LRR
6.3.2 无噪声LRR的闭解
6.3.3 稳健低秩表示
6.3.4 非凸低秩表示
6.4 与核范数有关的RMR
6.4.1 Lq范数正则核范数的矩阵回归
6.4.2 推广幂指数分布的矩阵回归
6.4.3 树结构核范数的矩阵回归
6.4.4 贝叶斯相关组的矩阵回归
6.5 应用
6.5.1 背景建模
6.5.2 子空间聚类
6.5.3 人脸识别
6.6 归纳与展望
参考文献
第7章 深度学习
7.1 概述
7.2 自编码器
7.2.1 正向传播与反向传播
7.2.2 自编码器架构
7.3 卷积神经网络
7.3.1 卷积神经网络基础
7.3.2 经典卷积神经网络模型
7.3.3 改进的卷积神经网络
7.4 递归神经网络
7.4.1 传统递归神经网络
7.4.2 基于门控单元的递归神经网络
7.4.3时空递归神经网络
7.4.4 递归形状回归网络
7.4.5 联合任务递归学习
7.4.6 轻量级递归神经网络
7.5 生成对抗网络
7.5.1 传统生成对抗网络
7.5.2 生成对抗网络的变种
7.5.3 ST条件生成对抗网络
7.6 图卷积神经网络
7.6.1 图卷积学习
7.6.2 张量图卷积学习
7.7 应用
7.7.1 目标检测
7.7.2 目标跟踪
7.7.3 场景理解
7.7.4 图像重建
7.7.5 社交网络
参考文献
买过这本书的人还买过
读了这本书的人还在读
同类图书排行榜