万本电子书0元读

万本电子书0元读

顶部广告

工业大数据分析算法实战电子书

所谓“工业大数据分析”,其实就是在工业生产过程、工业设备、流水线等一系列复杂系统中,通过通过分析现象去看本质的过程。比如设备出了问题,像是风电涡轮不转了,流水线卡住了,机器堵了,生产的产品突然出现了好多残次品,曾经的工程师都是凭经验,或者观察,通过现象去看本质。而现在,因为现代化的工厂或者工业设备的每一个环节都有各种电子数据的记录,而数据分析师则可以通过这些数据的统计,通过合适的算法和模式,去通过计算机发现这些设备出现的故障和问题。这就是数字化时代的故障分析技术——数据挺多,但是怎么用才对,这是一个数据分析师个人技术实力的体现。现在太多的数据分析师,只停留在“看”数据,而不是“分析”数据的水平上——知道从哪手去分析,比分析计算本身更重要。而这本书就是教你“从哪始分析,怎么站在机器的角度去分析机器的数据”。作者是工业大数据分析领域的首席科学家,20多年一直从事数据分析,很多大型机器设备的疑难杂症在他手里迎刃而解,作者语言简练,字字珠玑,对每个算法都给出了自己*直白的解释,这些干货却积攒了70万字! 从事工业领域的技术人员,都应该读一读田博士的这本著作。

售       价:¥

纸质售价:¥118.50购买纸书

29人正在读 | 0人评论 6.7

作       者:田春华

出  版  社:机械工业出版社

出版时间:2022-09-21

字       数:27.9万

所属分类: 科技 > 工业技术 > 航空/电子

温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印

为你推荐

  • 读书简介
  • 目录
  • 累计评论(0条)
  • 读书简介
  • 目录
  • 累计评论(0条)
《工业大数据分析算法实践》以工业大数据的特和需求为牵引,阐述了工业大数据分析的算法与实现机制,使具有工科背景读者建立起数据思维,灵活利用数据分析算法行实际问题的建模,并实现分析项目高效迭代与落地。具体主题覆盖了工业大数据分析工程思维和软件栈,工业数据的数据探索,预处理方法和常用机器学习算法,故障诊断、质量优化、流程优化的分析算法,专家规则驱动方法,以及工业数据分析工程等内容。 《工业大数据分析算法实践》分10章,可划分为四个部分。部分(第1章)是数据分析概览,目的是建立起数据分析算法的概念框架,并给出学习路线。第2~5章是第二部分,侧重在通用数据分析算法,包括数据预处理、机器学习、时序挖掘算法和*优化等其他算法。第三部分包括第6~8章,讨论了工业分析的算法思路,覆盖了生产质量分析(PQM)、生产效率优化(PEM)等典型分析课题的算法组合套路。第四部分侧重在分析工程方法,第9章讨论了工业专家知识沉淀方法,第10章讨论了数据分析的软件工程。 《工业大数据分析算法实践》适合工业大数据分析从业者、工业企业研发技术人员、工业互联网企业数据分析师阅读,也可作为上述人员的培训教材和相关专业师生的参考书。<br/>【推荐语】<br/>所谓“工业大数据分析”,其实就是在工业生产过程、工业设备、流水线等一系列复杂系统中,通过通过分析现象去看本质的过程。比如设备出了问题,像是风电涡轮不转了,流水线卡住了,机器堵了,生产的产品突然出现了好多残次品,曾经的工程师都是凭经验,或者观察,通过现象去看本质。而现在,因为现代化的工厂或者工业设备的每一个环节都有各种电子数据的记录,而数据分析师则可以通过这些数据的统计,通过合适的算法和模式,去通过计算机发现这些设备出现的故障和问题。这就是数字化时代的故障分析技术——数据挺多,但是怎么用才对,这是一个数据分析师个人技术实力的体现。现在太多的数据分析师,只停留在“看”数据,而不是“分析”数据的水平上——知道从哪手去分析,比分析计算本身更重要。而这本书就是教你“从哪始分析,怎么站在机器的角度去分析机器的数据”。作者是工业大数据分析领域的首席科学家,20多年一直从事数据分析,很多大型机器设备的疑难杂症在他手里迎刃而解,作者语言简练,字字珠玑,对每个算法都给出了自己*直白的解释,这些干货却积攒了70万字! 从事工业领域的技术人员,都应该读一读田博士的这本著作。<br/>【作者】<br/>田春华 博士,北京工业大数据创新中心首席数据科学家,清华大学工业大数据研究中心,首席数据科学家;曾任IBM中国研究院研究经理,IEEE、INFORMS、ACM等学术组织及国际学术会议分会主席、执行委员、国际学术期刊审稿人。长期负责数据挖掘算法研究和产品工作,在高端装备制造、石油石化、新能源、航空与港口等行业,帮助几十家国内外领先企业成功实施资产管理、运营优化、营销洞察等数据分析项目。参与了多个工业大数据相关标准的制定工作、白皮书的编写工作、竞赛支持工作。发表论文近百篇,拥有40余项国际国内发明专利授权。<br/>
目录展开

前折页

大数据与“智能+”产教融合丛书编辑委员会

丛书序一

丛书序二

前言

第1章 工业大数据分析概览

1.1 工业大数据分析的范畴与特点

1.2 数据挖掘的过程方法

1.3 数据分析工具软件

1.4 工业大数据分析师的算法修养

参考文献

第2章 数据预处理

2.1 数据操作基础

2.2 数据分析的数据操作技巧

2.3 探索型数据分析(EDA)

2.4 数据质量问题

2.5 特征提取

2.6 特征选择

参考文献

第3章 机器学习算法

3.1 统计分析

3.2 统计分布拟合

3.3 线性回归模型

3.4 多元自适应回归样条(MARS)

3.5 神经网络

3.6 决策树

3.7 支持向量机(SVM)

3.8 隐马尔可夫模型

3.9 概率图模型与贝叶斯方法

3.10 集成学习

3.11 模型评价

3.12 聚类

3.13 关联规则

3.14 深度学习

3.15 机器学习算法的其他视角

参考文献

第4章 时序数据挖掘算法

4.1 时序算法简介

4.2 信号处理算法

4.3 时序分解

4.4 时序分割

4.5 时序再表征

4.6 序列模式挖掘

4.7 时序异常检测

4.8 时序聚类

4.9 时序分类

4.10 时序预测

参考文献

第5章 其他算法

5.1 最优化算法

5.2 规则推理算法

5.3 系统辨识算法

5.4 特定数据类型的算法

参考文献

第6章 工业分析中的典型处理方法

6.1 工业分析中的数据预处理

6.2 通用时序特征

6.3 典型征兆特征

6.4 工业时序分析问题

参考文献

第7章 生产质量数据分析算法

7.1 概述

7.2 基础算法

7.3 时空模式分析

7.4 连续流程生产

7.5 批次流程生产

7.6 离散生产

7.7 总结

参考文献

第8章 生产效率优化

8.1 决策优化问题的建模思路

8.2 线性规划的建模技巧

8.3 整数规划的建模技巧

8.4 应用示例:电梯养护服务优化

8.5 经营预测类问题

参考文献

第9章 行业知识沉淀方法

9.1 讨论范畴

9.2 知识沉淀方法的维度模型

9.3 模型要素维度

9.4 设备对象维度

9.5 建模方法维度

9.6 软件维度

9.7 应用示例1:磨煤机堵磨预警

9.8 应用示例2:磨煤机暗断煤检测

9.9 应用示例3:发电机线棒高温预警

9.10 讨论与总结

参考文献

第10章 数据分析软件工程

10.1 数据分析项目失败的原因

10.2 传统的数据分析模式

10.3 生产环境下的机器学习模型

10.4 MLOps

10.5 分析应用组件

10.6 分析报告工具

10.7 计算任务管理

10.8 总结

参考文献

后折页

累计评论(0条) 0个书友正在讨论这本书 发表评论

发表评论

发表评论,分享你的想法吧!

买过这本书的人还买过

读了这本书的人还在读

回顶部