万本电子书0元读

万本电子书0元读

顶部广告

Python数据科学应用从入门到精通电子书

《Python数据科学应用从门到精通》是张甜博士和数据分析领域专家杨维忠合力造的精心之作,现在已成为编辑推荐。本书全面介绍了Python数据分析的基本概念和技能,包括数据清洗、数据可视化、统计分析、机器学习等。重要的是,本书注重实践应用,提供了大量的实例和案例,帮助读者更好地理解和掌握所学知识。无论是经济学、管理学、统计学、金融学、社会学、医学还是电子商务等专业学生,都可以将其作为学习Python数据分析的专业教材和参考书。而对于企业和事业单位来说,本书也是数字化人才培养的教科书和工具书。同时,职场人士也可以利用本书自学,掌握Python数据分析,提升数据挖掘、分析和可视化建模能力,从而提高工作效率和改善绩效水平。

售       价:¥

纸质售价:¥101.90购买纸书

6人正在读 | 0人评论 6.3

作       者:张甜、杨维忠

出  版  社:清华大学出版社有限公司

出版时间:2023-11-01

字       数:24.4万

所属分类: 科技 > 计算机/网络 > 程序设计

温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印

为你推荐

  • 读书简介
  • 目录
  • 累计评论(0条)
  • 读书简介
  • 目录
  • 累计评论(0条)
随着数据存储、数据处理等大数据技术的快速发展,数据科学在各行各业得到广泛的应用。数据清洗、特征工程、数据可视化、数据挖掘与建模等已成为高校师生和职场人士迎数字化浪潮、与时俱提升专业技能的必修课程。本书将“Python课程学习”与“数据科学应用”有机结合,为数字化人才的培养助力。 全书共分13章,内容包括:第1章数据科学应用概述;第2章Python的门基础知识;第3章数据清洗;第4~6章特征工程介绍,包括特征选择、特征处理和特征提取;第7章数据可视化应用;第8~13章介绍6种数据挖掘与建模的方法,分别为线性回归、Logistic回归、决策树、随机森林、神经网络、RFM分析。 《Python数据科学应用从门到精通》既适合作为经济学、管理学、统计学、金融学、社会学、医学、电子商务等相关专业的学生学习Python数据科学应用的专业教材或参考书,也适合作为企事业单位数字化人才培养的教科书与工具书。此外,还可以作为职场人士提升数据处理与分析挖掘能力,提高工作效能和绩效水平的自学Python数据科学应用的工具书。<br/>【推荐语】<br/>《Python数据科学应用从门到精通》是张甜博士和数据分析领域专家杨维忠合力造的精心之作,现在已成为编辑推荐。本书全面介绍了Python数据分析的基本概念和技能,包括数据清洗、数据可视化、统计分析、机器学习等。重要的是,本书注重实践应用,提供了大量的实例和案例,帮助读者更好地理解和掌握所学知识。无论是经济学、管理学、统计学、金融学、社会学、医学还是电子商务等专业学生,都可以将其作为学习Python数据分析的专业教材和参考书。而对于企业和事业单位来说,本书也是数字化人才培养的教科书和工具书。同时,职场人士也可以利用本书自学,掌握Python数据分析,提升数据挖掘、分析和可视化建模能力,从而提高工作效率和改善绩效水平。<br/>【作者】<br/>张甜,山东大学金融学博士,现就职于山东管理学院,教授统计学、计量经济学等课程,硕、博士期间分别师从山东大学陈强教授、曹廷求教授,在《财贸经济》《经济评论》等重要期刊发文多篇,参与“地方金融运行动态监测及系统性风险预警研究”等多项重大项目,著有《Python数据科学应用从门到精通》《Stata统计分析从门到精通》《SPSS统计分析门与应用精解(视频教学版)》等10余本畅销数据分析教材。 杨维忠,山东大学西方经济学硕士,CPA,目前就职于某全国性股份制商业银行总行,担任总行数据分析与机器学习内训师。精通Python、Stata、SPSS、Eviews、Excel等多种统计分析软件,具有深厚的学术研究功底、丰富的实践操作经历和授课经验,尤其擅长将各种统计分析方法与机器学习算法应用到工作中,著有多本畅销数据分析教材,深受读者欢迎。<br/>
目录展开

内容简介

作者简介

推荐序1

推荐序2

前言

第1章 数据科学应用概述

第2章 Python入门基础

第3章 数据清洗

第4章 特征选择

第5章 特征处理

第6章 特征提取

第7章 数据可视化

第8章 数据挖掘与建模1——线性回归

第9章 数据挖掘与建模2——Logistic回归

第10章 数据挖掘与建模3——决策树

第11章 数据挖掘与建模4——随机森林

第12章 数据挖掘与建模5——神经网络

第13章 数据挖掘与建模6——RFM分析

累计评论(0条) 0个书友正在讨论这本书 发表评论

发表评论

发表评论,分享你的想法吧!

买过这本书的人还买过

读了这本书的人还在读

回顶部