如果您只知道、只应用互联网大数据,不能称为真的懂大数据。电信运营商以其数据特殊性,必将成为大数据领域的领航者、生力军。 在数据融合的时代,越来越多的互联网人发现,电信大数据里蕴含金矿,但其神秘面纱,此前并未专门、详细地揭示。 本书带您了解电信运营商数据的全貌,更重要的是,怎样结合到您的行业,助力企业的发展和转型! 院士、院长、首席科学家、总经理在看的书,推荐的书,您也能有幸看到!
售 价:¥
纸质售价:¥32.50购买纸书
温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印
为你推荐
作者简介
版权页
编委会
前言
第1章 大数据的发展历程和时代背景
1.1 大数据发展的五大驱动力
1.2 大数据发展的历程及技术演进
1.2.1 采集解析技术
1.2.2 存储管理技术
1.2.3 并行计算技术
1.3 大数据引起的时代变革
1.3.1 智能派单、路线优化
1.3.2 金融授信、风险防范
1.3.3 广告精准投放
1.3.4 挖掘用户的隐性需求
1.4 电信大数据的掘金之路
1.4.1 AT&T
1.4.2 德国电信
1.4.3 Vodafone
1.4.4 法国电信
1.4.5 中国联通
第2章 电信运营商的价值数据
2.1 电信运营商数据源概览
2.2 网络运行数据
2.2.1 基础资源及配置数据
2.2.2 信令追踪数据
2.2.3 业务识别数据
2.2.4 性能统计数据
2.2.5 监控预警数据
2.3 业务运营数据
2.3.1 用户基础资料
2.3.2 用户业务行为
2.3.3 用户辅助信息
第3章 电信大数据分析体系
3.1 用户画像及行为洞察
3.1.1 用户全息画像构建
3.1.2 用户实时轨迹追踪
3.1.3 用户行为偏好分析
3.2 业务识别及感知评判
3.2.1 业务特征捕获
3.2.2 用户业务感知评价
3.3 网络分析及全景描绘
3.3.1 网络资源分析
3.3.2 网络覆盖分析
3.3.3 网络性能分析
3.3.4 网络结构分析
3.4 终端解构及性能评价
3.4.1 终端分类构成解析
3.4.2 终端综合性能评价
3.5 运行匹配度解析
3.5.1 终端与网络匹配度
3.5.2 网络资源与业务匹配度
3.6 众筹竞争力分析
3.6.1 传统分析方法及局限性
3.6.2 基于智能终端App数据的分析方法
3.6.3 分析结果示例
第4章 电信大数据企业内部应用
4.1 大数据助力资源精准投放——网络规划建设
4.1.1 网络规划资源的精准投放
4.1.2 网络建设效果的有效评价
4.2 大数据助力效率提升——网络运维优化
4.2.1 智能化运维
4.2.2 精细化优化
4.3 特定用户群体的精准营销——市场推送
4.3.1 流量经营时代
4.3.2 现网中价值区域的挖掘
4.3.3 基于B+O大数据的流量经营策略
4.3.4 新型业务营销及发展趋势
4.4 用户黏性及离网预判——客户维系
4.4.1 存量客户
4.4.2 现有用户的套餐升级
4.4.3 潜在异网客户
第5章 电信大数据外部行业应用
5.1 电信大数据在交通领域的应用
5.1.1 交通行业的发展需求
5.1.2 交通行业数据现状
5.1.3 电信运营商在交通领域的角色定位
5.1.4 电信大数据助力交通领域的应用案例
5.2 电信大数据在金融领域的应用
5.2.1 金融行业发展需求
5.2.2 金融行业数据现状
5.2.3 电信运营商在金融行业的角色定位
5.2.4 电信大数据助力金融的应用案例
5.3 电信大数据在城市规划领域的应用
5.3.1 城市规划发展需求
5.3.2 城市规划数据现状
5.3.3 电信运营商在城市规划的角色定位
5.3.4 电信大数据助力城市规划的应用案例
5.4 电信大数据在旅游领域的应用
5.4.1 旅游行业发展需求
5.4.2 旅游行业数据现状
5.4.3 电信运营商在旅游行业的角色定位
5.4.4 电信大数据助力旅游行业的应用案例
5.5 电信大数据在广告领域的应用
5.5.1 广告行业发展需求
5.5.2 广告行业数据现状
5.5.3 电信运营商在广告行业的角色定位
5.5.4 电信大数据助力广告精准投放的应用案例
5.6 电信大数据在公众及气象领域的应用
5.6.1 公众及气象领域发展需求
5.6.2 公众及气象领域数据现状
5.6.3 电信运营商在公众及气象领域的角色定位
5.6.4 电信大数据助力公众及气象领域的应用案例
5.7 电信大数据在餐饮、娱乐领域的应用
5.7.1 餐饮、娱乐行业发展需求
5.7.2 餐饮、娱乐行业数据现状
5.7.3 电信运营商在餐饮、娱乐行业的角色定位
5.7.4 电信大数据助力餐饮、娱乐行业的应用案例
5.8 电信大数据在其他领域的应用
5.8.1 商业决策
5.8.2 治安监控
5.8.3 政府决策
5.8.4 医疗行业
5.8.5 教育行业
第6章 大数据的风险与挑战
6.1 风险管理
6.1.1 数据泡沫风险
6.1.2 技术升级风险
6.1.3 隐私侵权风险
6.2 挑战应对
6.2.1 技术发展挑战
6.2.2 思维转变挑战
6.2.3 商业挑战
参考文献
本书特色:
买过这本书的人还买过
读了这本书的人还在读
同类图书排行榜