读者对象:1、希望全面回顾自然语言处理领域的深度学习基础知识的数据科学家和工程师;2、对自然语言处理领域的深度学习感兴趣的新生代IT人员;3、从初级到高级的各级学生、教师、研究人员;4、其他对自然语言处理领域的深度学习感兴趣的人员。 本书首先介绍自然语言处理领域的基本构件,着介绍使用*的神经网络模型可以解决的问题。深研究各种神经网络架构及其特定的应用领域将有助于你理解如何选择*模型来满足你的需求。随着学习的深,你将学到卷积神经网络、循环神经网络、递归神经网络以及长短期记忆网络。在后面的章节中,你将能够使用自然语言处理技术(如注意力机制模型和集束搜索)发应用程序。学完本书,你不仅能具备自然语言处理的基础知识,还能选择绝佳的文本预处理和神经网络模型来解决一些自然语言处理的问题。
售 价:¥
纸质售价:¥59.20购买纸书
温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印
为你推荐
译者序
前言
第1章 自然语言处理
1.1 本章概览
1.2 自然语言处理的基础知识
1.3 自然语言处理的能力
1.4 自然语言处理中的应用
1.5 词嵌入
1.6 本章小结
第2章 自然语言处理的应用
2.1 本章概览
2.2 词性标注
2.3 词性标注的应用
2.4 分块
2.5 加缝
2.6 命名实体识别
2.7 本章小结
第3章 神经网络
3.1 本章概览
3.2 神经网络
3.3 训练神经网络
3.4 神经网络的设计及其应用
3.5 部署模型即服务的基础
3.6 本章小结
第4章 卷积神经网络
4.1 本章概览
4.2 理解CNN的架构
4.3 训练CNN
4.4 CNN的应用领域
4.5 本章小结
第5章 循环神经网络
5.1 本章概览
5.2 神经网络的早期版本
5.3 RNN
5.4 更新和梯度流
5.5 梯度
5.6 本章小结
第6章 门控循环单元
6.1 本章概览
6.2 简单RNN的缺点
6.3 门控循环单元
6.4 基于GRU的情感分析
6.5 本章小结
第7章 长短期记忆网络
7.1 本章概览
7.2 输入门和候选单元状态
7.3 输出门和当前激活
7.4 神经语言翻译
7.5 本章小结
第8章 自然语言处理前沿
8.1 本章概览
8.2 其他架构和发展状况
8.3 本章小结
第9章 组织中的实际NLP项目工作流
9.1 本章概览
9.2 问题定义
9.3 数据采集
9.4 谷歌Colab
9.5 Flask
9.6 部署
9.7 本章小结
附录
买过这本书的人还买过
读了这本书的人还在读
同类图书排行榜