万本电子书0元读

万本电子书0元读

顶部广告

压电与铁电体的断裂力学电子书

本书是关于压电/铁电材料断裂力学的专著,从理论分析、数值计算和实验观察三个方面比较全面、系统地阐述了压电/铁电材料的电致断裂问题,强调静态、动态和界面断裂问题的力学提法以及力电耦合效应所导致的电致断裂的物理本质。

售       价:¥

纸质售价:¥101.10购买纸书

8人正在读 | 1人评论 6.2

作       者:方岱宁,刘金喜

出  版  社:清华大学出版社

出版时间:2012-10-01

字       数:8802

所属分类: 科技 > 工业技术 > 一般工业技术

温馨提示:数字商品不支持退换货,不提供源文件,不支持导出打印

为你推荐

  • 读书简介
  • 目录
  • 累计评论(1条)
  • 读书简介
  • 目录
  • 累计评论(1条)
《压电与铁电体的断裂力学(英文版)》是关于压电/铁电吲体断裂力学的专著,从理论分析、数值计算和实验观察三个方面比较全面和系统地阐述了压电/铁电固体的断裂问题,强调静态、动态和界面断裂问题的力学提法以及力电耦合效应所导致的电致断裂的物理本质。《压电与铁电体的断裂力学》的上要特色是:详细描述了压电/铁电材料的基本方程以及与断裂问题相关的一般解.以图的形式提供了大量的数值计算结果和实验结果,用简洁的语言解释了复杂的力电耦合断裂问题。《压电与铁电体的断裂力学》的这些特色使固体力学、材料科学、应用物理和机械工程领域的渎者能够很容易抓住问题的物理本质和把握压电/铁电固体断裂力学的研究现状。<br/>
目录展开

BOOKNAME

COPYRIGHT

书名页

内容简介

版权页

Foreword

Preface

Contents

Chapter 1 Introduction

1.1 Background of the research on fracture mechanics of piezoelectric/ferroelectric materials

1.2 Development course and trend

1.3 Framework of the book and content arrangements

References

Chapter 2 Physical and Material Properties of Dielectrics

2.1 Basic concepts of piezoelectric/ferroelectric materials

2.2 Crystal structure of dielectrics

2.3 Properties of electric polarization and piezoelectricity

2.3.1 Microscopic mechanism of polarization

2.3.2 Physical description of electric polarization

2.3.3 Dielectric constant tensor of crystal and its symmetry

2.4 Domain switch of ferroelectrics

2.4.1 Electric domain and domain structure

2.4.2 Switching of electric domain and principles for domain switch

References

Chapter 3 Fracture of Piezoelectric/Ferroelectric Materials—Experiments and Results

3.1 Experimental approaches and techniques under an electromechanical coupling field

3.1.1 High-voltage power supply

3.1.2 High voltage insulation

3.1.3 Moire interferometry

3.1.4 Digital speckle correlation method

3.1.5 Method of polarized microscope

3.1.6 Experimental facilities

3.2 Anisotropy of fracture toughness

3.3 Electric field effect on fracture toughness

3.4 Fracture behavior of ferroelectric nano-composites

3.5 Measurement of strain field near electrode in double-layer structure of piezoelectric ceramics

3.6 Observation of crack types near electrode tip

3.7 Experimental results and analysis related to ferroelectric single crystal out-of-plane polarized

3.7.1 Restorable domain switch at crack tip driven by low electric field

3.7.2 Cyclic domain switch driven by cyclic electric field

3.7.3 Electric crack propagation and evolution of crack tip electric domain

3.8 Experimental results and analysis concerning in-plane polarized ferroelectric single crytal

3.8.1 Response of specimen under a positive electric field

3.8.2 Crack tip domain switch under low negative electric field

3.8.3 Domain switching zone near crack tip under negative field

3.8.4 Evolution of electric domain near crack tip under alternating electric field

References

Chapter 4 Basic Equations of Piezoelectric Materials

4.1 Basic equations

4.1.1 Piezoelectric equations

4.1.2 Gradient equations and balance equations Gradient equations

4.2 Constraint relations between various electroelastic constants

4.3 Electroelastic constants of piezoelectric materials

4.3.1 Coordinate transformation between vector and tensor of the second order

4.3.2 Coordinate transformation of electroelastic constants

4.3.3 Electroelastic constant matrixes of piezoelectric crystals vested in 20 kinds of point groups

4.4 Governing differential equations and boundary conditions of electromechanical coupling problems

4.4.1 Governing differential equations of electromechanical coupling problems

4.4.2 Boundary conditions of electromechanical coupling

References

Chapter 5 General Solutions to Electromechanical Coupling Problems of Piezoelectric Materials

5.1 Extended Stroh formalism for piezoelectricity

5.1.1 Extended Stroh formalism

5.1.2 Mathematical properties and important relations of Stroh formalism

5.2 Lekhniskii formalism for piezoelectricity

5.3 General solutions to two-dimensional problems of transversely isotropic piezoelectric materials

5.3.1 The general solutions to the anti-plane problems of transversely isotropic piezoelectric materials

5.3.2 The general solutions to the in-plane problems of transversely isotropic piezoelectric materials—Stroh method

5.3.3 The general solutions to the in-plane problems of transversely isotropic piezoelectric materials—Lekhniskii method

5.4 General solutions to three-dimensional problems of transversely isotropic piezoelectric materials

References

Chapter 6 Fracture Mechanics of Homogeneous Piezoelectric Materials

6.1 Anti-plane fracture problem

6.2 In-plane fracture problem

6.3 Three dimensional fracture problem

6.3.1 Description of problem

6.3.2 Derivation of electroelastic fields

6.4 Electromechanical coupling problem for a dielectric elliptic hole

6.4.1 Anti-plane problem of transversely isotropic piezoelctric material containing dielectric ellipic holes

6.4.2 Generalized plane problems of piezoelectric materials containing a dielectric elliptic hole

6.5 Influence on crack tip field imposed by electric boundary conditions along the crack surface

References

Chapter 7 Interface Fracture Mechanics of Piezoelectric Materials

7.1 Interfacial cracks in piezoelectric materials under uniform electromechanical loads

7.1.1 Tip field of interfacial crack

7.1.2 Full field solutions for an impermeable interfacial crack

7.2 Effect of material properties on interfacial crack tip field

7.3 Green’s functions for piezoelectric materials with an interfacial crack

7.3.1 Brief review of Green’s functions for piezoelectric materials

7.3.2 Green’s functions for anti-plane interfacial cracks

References

Chapter 8 Dynamic Fracture Mechanics of Piezoelectric Materials

8.1 Scattering of elastic waves in a cracked piezoelectrics

8.1.1 Basic concepts concerning propagation of elastic wave in a piezoelectrics

8.1.2 Dominant research work on elastic wave scattering caused by cracks in piezoelectrics

8.1.3 Scattering of Love wave caused by interficial cracks in layered elastic half-space of piezoelectrics

8.2 Moving cracks in piezoelectric medium

8.2.1 Anti-plane problems of moving interficial cracks

8.2.2 The plane problem of moving cracks

8.3 Transient response of a cracked piezoelectrics to electromechanical impact load

8.3.1 Anti-plane problems of cracked piezoelectrics under impact electromechanical loads

8.3.2 Transient response of crack mode-Ⅲin strip-shaped piezoelectric medium

8.3.3 In-plane problems of cracked piezoelectrics under the action of impact electromechanical loads

8.4 Dynamic crack propagation in piezoelectric materials

8.4.1 Dynamic propagation of conducting crack mode-Ⅲ

8.4.2 Dynamic propagation of dielectric crack mode-Ⅲ

References

Chapter 9 Nonlinear Fracture Mechanics of Ferroelectric Materials

9.1 Nonlinear fracture mechanical model

9.1.1 Electrostriction model

9.1.2 Dugdale model \(strip saturation mode\)

9.2 Domain switching toughening model

9.2.1 Decoupled isotropy model

9.2.2 Anisotropy model for electromechanical coupling

9.3 Nonlinear crack opening displacement model

9.3.1 Definition of crack opening displacement

9.3.2 Crack opening displacement δ_0 caused by piezoelectric effect

9.3.3 Effect △δ of domain switching on crack opening displacement

9.4 Interaction between crack tip domain switching of BaTiO_3 single crystal and crack growth under electromechanical load

9.4.1 Experiment principle and technology

9.4.2 Experimental phenomena

9.4.3 Analysis of domain switching zone

9.4.4 Ferroelastic domain switching toughening

References

Chapter 10 Fracture Criteria

10.1 Stress intensity factor criterion

10.2 Energy release rate criterion

10.2.1 Total energy release rate criterion

10.2.2 Mechanical strain energy release rate criterion

10.3 Energy density factor criterion

10.4 Further discussion on stress intensity factor criterion

10.5 COD criterion

References

Chapter 11 Electro-elastic Concentrations Induced by Electrodes in Piezoelectric Materials

11.1 Electroelastic field near surface electrodes

11.1.1 Electroelastic field near stripe-shaped surface electrodes

11.1.2 Electroelastic field near circular surface electrodes

11.2 Electroelastic field near interface electrode

11.2.1 General solution to the interface electrode of anisotropic piezoelectric bi-materials

11.2.2 Electroelastic field near the interface electrode in transversely isotropic piezoelectric bi-materials

11.3 Electroelastic field in piezoelectric ceramic-electrode layered structures

11.3.1 Laminated structure model, experimental set-up and finite element calculation model

11.3.2 Numerical calculation and experimentally measured results

References

Chapter 12 Electric-Induced Fatigue Fracture

12.1 Experimental observation and results

12.1.1 Electrically induced fatigue experiment by Cao and Evans(1994)

12.1.2 Electrically induced fatigue experiment of samples containing penetrating cracks

12.2 Phenomenological model

12.2.1 ModelⅠ

12.2.2 ModelⅡ

12.3 Domain switching model

12.3.1 Electrically induced fatigue investigated by means of crack tip intensity factor

12.3.2 Investigation of electrically induced fatigue by means of crack opening displacement(COD)

References

Chapter 13 Numerical Method for Analyzing Fracture of Piezoelectric and Ferroelectric Materials

13.1 Generalized variation principle

13.1.1 Generalized variation principle of linear elastic mechanics

13.1.2 Variation principle of electromechanical coupling problem

13.2 Finite element method for piezoelectric material fracture

13.2.1 Basic format of finite element for piezoelectric fracture

13.2.2 Calculation example:the electromechanical field around the circular hole in an infinite piezoelectric matrix

13.2.3 Calculation example:model of piezoelectric material with two-sided notches

13.3 Meshless method for piezoelectric material fracture

13.3.1 Basic format of electromechanical coupling meshless method

13.3.2 Some problems about electromechanical coupling meshless method

13.3.3 Numerical example

13.4 Nonlinear finite element analysis of ferroelectric material fracture

13.4.1 Solution of field quantity with given electric domain distribution

13.4.2 New electric domain distribution and finite element iterative process determined by field quantity

13.4.3 Calculation example:Ferroelectric crystal containing insulating circular hole plus vertical electric field

13.4.4 Calculation example:Ferroelectric crystal containing insulating crack plus electric field(E=0.72E_c) perpendicular to crack surface

References

Appendix The Material Constants of Piezoelectric Ceramics

累计评论(1条) 1个书友正在讨论这本书 发表评论

发表评论

发表评论,分享你的想法吧!

买过这本书的人还买过

读了这本书的人还在读

回顶部