万本电子书0元读

万本电子书0元读

顶部广告

白话机器学习算法电子书

斯坦福大学大数据基础课程教材 文科生也看得懂的算法及数据科学门书 涵盖回归分析、神经网络、决策树、A/B测试等重要主题

售       价:¥

纸质售价:¥38.70购买纸书

1459人正在读 | 0人评论 6.8

作       者:(新加坡) 黄莉婷 苏川集

出  版  社:人民邮电出版社

出版时间:2019-02-01

字       数:4.4万

所属分类:

温馨提示:此类商品不支持退换货,不支持下载打印

  • 读书简介
  • 目录
  • 累计评论(0条)
  • 读书简介
  • 目录
  • 累计评论(0条)
与使用数学语言或计算机编程语言讲解算法的书不同,本书另辟蹊径,用通俗易懂的人类语言以及大量有趣的示例和插图讲解10多种前沿的机器学习算法。内容涵盖k均值聚类、主成分分析、关联规则、社会网络分析等无监督学习算法,以及回归分析、k*近邻、支持向量机、决策树、随机森林、神经网络等监督学习算法,并概述强化学习算法的思想。 与使用数学语言或计算机编程语言讲解算法的书不同,本书另辟蹊径,用通俗易懂的人类语言以及大量有趣的示例和插图讲解10多种前沿的机器学习算法。内容涵盖k均值聚类、主成分分析、关联规则、社会网络分析等无监督学习算法,以及回归分析、k*近邻、支持向量机、决策树、随机森林、神经网络等监督学习算法,并概述强化学习算法的思想。
【推荐语】
斯坦福大学大数据基础课程教材 文科生也看得懂的算法及数据科学门书 涵盖回归分析、神经网络、决策树、A/B测试等重要主题
【作者】
黄莉婷(Annalyn Ng),高级数据分析师,剑桥大学心理测量中心硕士,曾受邀在迪士尼研究中心研究客户行为科学,并通过数据挖掘技术帮助三星和雅虎等公司制定营销和人员招聘等方面的策略。 苏川集(Kenneth Soo),斯坦福大学统计学硕士,华威大学高材生,曾从事网络随机故障下应用程序的双目标稳健优化研究,善于用通俗的语言介绍数据科学。
目录展开

前言

为何需要数据科学

第1章 基础知识

1.1 准备数据

1.2 选择算法

1.3 参数调优

1.4 评价模型

1.5 小结

第2章 k 均值聚类

2.1 找出顾客群

2.2 示例:影迷的性格特征

2.3 定义群组

2.4 局限性

2.5 小结

第3章 主成分分析

3.1 食物的营养成分

3.2 主成分

3.3 示例:分析食物种类

3.4 局限性

3.5 小结

第4章 关联规则

4.1 发现购买模式

4.2 支持度、置信度和提升度

4.3 示例:分析杂货店的销售数据

4.4 先验原则

4.5 局限性

4.6 小结

第5章 社会网络分析

5.1 展现人际关系

5.2 示例:国际贸易

5.3 Louvain 方法

5.4 PageRank 算法

5.5 局限性

5.6 小结

第6章 回归分析

6.1 趋势线

6.2 示例:预测房价

6.3 梯度下降法

6.4 回归系数

6.5 相关系数

6.6 局限性

6.7 小结

第7章 k 最近邻算法和异常检测

7.1 食品检测

7.2 物以类聚,人以群分

7.3 示例:区分红白葡萄酒

7.4 异常检测

7.5 局限性

7.6 小结

第8章 支持向量机

8.1 医学诊断

8.2 示例:预测心脏病

8.3 勾画最佳分界线

8.4 局限性

8.5 小结

第9章 决策树

9.1 预测灾难幸存者

9.2 示例:逃离泰坦尼克号

9.3 生成决策树

9.4 局限性

9.5 小结

第10章 随机森林

10.1 集体智慧

10.2 示例:预测犯罪行为

10.3 集成模型

10.4 自助聚集法

10.5 局限性

10.6 小结

第11章 神经网络

11.1 建造人工智能大脑

11.2 示例:识别手写数字

11.3 神经网络的构成

11.4 激活规则

11.5 局限性

11.6 小结

第12章 A/B测试和多臂老虎机

12.1 初识 A/B 测试

12.2 A/B 测试的局限性

12.3 epsilon 递减策略

12.4 示例:多臂老虎机

12.5 胜者为先

12.6 epsilon 递减策略的局限性

12.7 小结

附录 A 无监督学习算法概览

附录 B 监督学习算法概览

附录 C 调节参数列表

附录 D 更多评价指标

D.1 分类指标

D.2 回归指标

术语表

关于作者

累计评论(0条) 0个书友正在讨论这本书 发表评论

发表评论

发表评论,分享你的想法吧!

买过这本书的人还买过

读了这本书的人还在读

回顶部