万本电子书0元读

万本电子书0元读

49元5本 Linux内核观测技术BPF
Linux内核观测技术BPF
(美)大卫·卡拉维拉(David Calavera);(意)洛伦佐·丰塔纳(Lorenzo Fontana)
¥51.35
本书是一本面向系统工程师的实践指南,皆在帮助他们获得Linux内核中BPF虚拟机的专业知识。 通过本书,你不仅可以深了解BPF程序的生命周期,熟悉日常工作所需的基本概念,增强有关性能优化、网络和安全方面的知识。还可以学习如何编写观测和修改内核行为的应用程序,以及通过代码注的方式对内核事件行监控、跟踪和安全观测等内容。同时,本书展示了相关的C、Go和Python代码示例。 本书将BPD知识系统的汇总在一起,使BPF爱好者能系统地学习这一技术。 
49元5本 构建高可用Linux服务器(第3版)
构建高可用Linux服务器(第3版)
余洪春
¥51.35
  本书是Linux运维领域公认的经典畅销书,是51CTO、IT168等知名网站和多位资深运维专家共同推荐的运维工程师的工具书!   酒哥在Linux运维领域潜心实践近10年,一直在运维一线,技术和思维都紧跟时代的发展,非常清楚运维工程师们需要什么,应该学习什么。本书不仅是他近10年工作经验的结晶,同时也是他的数万名读者和数十万粉丝共同需求和集体智慧的呈现。本书自第1版出版以来,就广受关注和好评,曾被《程序员》杂志和51CTO等权威IT媒体评为“10大*技术影响力的图书”和“受读者喜爱的原创图书”。笔者根据运维技术的发展和读者的反馈意见,不断地对书的内容行优化:更新了过时的技术;补充了*的内容;限于篇幅,部分内容作为电子版免费提供给读者在线阅读,从而使得这本书的内容更加完善。
49元5本 区块链网络构建和应用:基于超级账本Fabric的商业实践
区块链网络构建和应用:基于超级账本Fabric的商业实践
陆平;等
¥51.35
本书由8章组成。第1章介绍了区块链基础,包含了区块链领域的基础概念术语、核心技术、热门区块链平台等内容。第2章对分布式系统技术进行了介绍,区块链首先是一个分布式系统,了解区块链离不开分布式系统技术。第3章介绍了密码学安全技术。公私钥密码算法是区块链系统的基石。区块链之所以被称为信任的机器,其中的密码安全技术是重要的一个环节。第4章以Fabric开源项目为基础,引导用户构建一个自己的区块链网络。第5章基于开源项目源码的分析,帮助用户深入了解区块链账本、共识算法、加密等核心技术的实现。第6章通过介绍区块链在政务服务数据共享及服务商的项目实践,让读者对区块链项目落地有深入的了解。第7章对区块链在各个行业的典型应用进行了介绍,让读者对区块链应用实践有更加*的了解。第8章对区块链未来发展进行了展望,针对区块链与其他技术的融合、区块链技术发展中面临的挑战,从性能、安全等多维度进行了研讨。综合本书的内容,全书可分为理论和实践两部分,前3章注重理论,后5章注重实践,图文并茂,内容丰富,由浅入深,讲解*,具有很强的借鉴性。
49元5本 会话式AI:自然语言处理与人机交互
会话式AI:自然语言处理与人机交互
杜振东;涂铭
¥51.35
这是一部讲解如何基于NLP技术和人机交互技术实现聊天机器人的著作。 两位作者聊天机器人领域均有多年大型项目的实战经验,这本书不仅讲解了NLP和人机交互的核心技术,而且从技术、算法、实战3个维度讲解聊天机器人的原理、实现与工程实践。 本书有3个特: 前瞻性强,专注于NLP和人机交互的前沿技术,以及会话式AI技术在热门场景中的工程实践。 实战性强,每章都提供实战代码,大部分代码简单修改后便可在实际场景中使用;数据集并非简单构造,而是具有真实性。 对比性强,结合应用场景,对比不同技术的优劣,既能指导读者行技术选型,又能加深读者对不同技术的理解。 本书一共12章,分为三大部分: 第壹部分 基础篇(第1-2章) 首先系统介绍了人机交互技术和聊天机器人技术的基础,然后讲解了深度学习工具的使用以及NLP发环境的搭建 第二部分 算法篇(第3-8章) 这部分是核心内容,主要讲解中文自然语言处理的各种算法,包括分词技术、数据预处理、词向量技术、序列标注与中文 NER、文本深度学习、循环神经网络等。 第三部分 实战篇(第9-12章) 主要讲解了语言模型与对话生成、知识图谱问答、自然语言推理、实体语义理解这4种人机交互方面的高阶技术,涵盖信息抽取、槽位填充、语义理解、聊天机器人、问答系统、多轮对话技术等知识。
49元5本 商用机器学习:数据科学实践
商用机器学习:数据科学实践
(加)约翰·赫尔(John C· Hull)
¥51.35
本书向企业高管和学生介绍了在机器学习中如何使用工具,不需要使用微积分、矩阵或向量代数就可以清楚、简洁地解释目前*流行的算法。本书的重是业务应用程序,并提供了许多案例,比如评估一个国家行国际投资的风险、预测房地产的价值,以及可以细致到将零售贷款分为可受或不可受模式。书中示例的数据、工作表和Python代码都在作者的网站上,本书同时还提供了一套完整的幻灯片,供教师使用,教师可自行下载使用。
49元5本 强化学习入门:从原理到实践
强化学习入门:从原理到实践
叶强;闫维新;黎斌
¥51.35
本书以理论和实践相结合的形式深浅出地介绍强化学习的历史、基本概念、经典算法和一些前沿技术,共分为三大部分:第壹部分(1~5章)介绍强化学习的发展历史、强化学习的基本概念以及一些经典的强化学习算法;第二部分(6~9章)在简要回顾深度学习技术的基础上着重介绍深度强化学习的一些前沿实用算法;第三部分(*后一章)以五子棋为例详细讲解战胜了人类*围棋选手的Alpha Zero算法的核心思想。
49元5本 Windows Server 2012 Hyper-V虚拟化部署与管理指南
Windows Server 2012 Hyper-V虚拟化部署与管理指南
马博峰
¥51.35
  windows server 2012 hyper-v虚拟化部署与管理领域为详尽和权威的指南之一,由来自于微软的资深虚拟化与云计算专家亲自执笔。《windows server 2012 hyper-v虚拟化部署与管理指南》不仅对windows server 2012 hyper-v虚拟化的强大功能做了详尽的阐述,而且对windows server 2012在虚拟化、网络、存储、用户体验、云计算、自动化等多种领域的数百项新的改行了详尽的讲解。   全书共10章:第1~2章首先对windows server 2012和hyper-v 2012的新功能行了全面的介绍,然后对hyper-v 2012的部署行了详细的讲解;第3~9章分别讲解了hyper-v 虚拟机的管理、网络功能及其设置、存储设置、动态实时迁移、故障转移集群的管理、复制、备份;第10章介绍了system center virtual machine manager 2012的功能和配置。?
49元5本 深度学习:卷积神经网络技术与实践
深度学习:卷积神经网络技术与实践
高敬鹏
¥51.35
本书共11章,主要内容包括深度学习简介、Python基础、神经网络基础、卷积神经网络、经典卷积网络结构、迁移学习、循环神经网络、强化学习、深度强化学习、基于策略的算法更新与趋势等,通过具体案例,将Python语言、深度学习思想、强化学习思想和实际工程完美地结合起来。本书由浅深,从易到难,各章节既相对独立又前后关联,其*大的特就是破了传统书籍的讲解方法,在介绍各部分理论基础的同时,搭配具体实例,通过对相关程序的详细讲解一步加深对理论基础的理解。
49元5本 机器学习:基于OpenCV和Python的智能图像处理
机器学习:基于OpenCV和Python的智能图像处理
高敬鹏;江志烨;赵娜
¥51.35
本书以Python语言为蓝本,以OpenCV为框架,使用Anaconda搭建环境,通过丰富的实例,从实验、实践、实用的角度,详细叙述了运用Python和OpenCV实现智能图像处理的过程。全书共12章,主要内容包括智能图像处理门、Python基础、图像处理基础、图像几何变换、图像直方图处理、图像平滑滤波处理、图像阈值处理、图像形态学处理、图像分割处理、图像梯度及边缘检测、图像轮廓检测与拟合、人脸识别实现等,全面阐述了智能图像处理的理论基础和实现过程。 本书侧重基础、易学易懂,各章节既相对独立又前后关联,其*大的特就是破了传统书籍的讲解方法,在介绍各部分理论基础的同时,搭配具体实例,通过对相关程序的详细讲解,帮助读者一步加深对理论基础的理解。本书每章配有习题,以指导读者深学习智能图像处理技术。
49元5本 基于机器学习的数据缺失值填补:理论与方法
基于机器学习的数据缺失值填补:理论与方法
赖晓晨;张立勇;刘辉;吴霞
¥51.35
这是一部讲解如何基于机器学习技术实现数据缺失值填补的专著,与传统的基于统计学的缺失值填补方法相比,效率上得到了较大的提升。作者基于多年的研究和实践成果,创新性地提出了基于神经网络的缺失值填补方法和基于TS模型的缺失值填补方法。 全书共8章,可分为4个部分。 第壹部分(第1~3章):首先介绍缺失值填补领域的缺失数据机制、基本概念、性能度量等基础知识,随后详细阐述目前基于统计学、机器学习的缺失值填补理论与方法。 第二部分(第4~5章):对目前神经网络在缺失值填补领域的研究成果行归纳总结,并从网络模型、填补方案角度阐述神经网络填补方法的设计及应用。 第三部分(第6~7章):详细介绍面向不完整数据的TS建模过程,随后通过特征选择算法处理TS建模中的特征冗余问题,并从前提参数优化和结论参数优化两个角度改TS模型。 第四部分(第8章):以缺失值填补方法在我国贫困问题研究中的应用为例,展现缺失值填补方法的现实意义。
49元5本 机器阅读理解:算法与实践
机器阅读理解:算法与实践
朱晨光
¥51.35
微软高级研究员撰写,剖析机器阅读理解支撑技术、模型架构、前沿算法、模型SDNet源码与落地应用。 全书分为三篇,共8章内容。基础篇(第1~3章),介绍机器阅读理解的基础知识和关键支撑技术,涵盖机器阅读理解任务的定义,阅读理解模型中常用的自然语言处理技术和深度学习网络模块,例如如何让计算机表示文章和问题、做多项选择题及生成回答等。架构篇(第4~6章),介绍解决各类机器阅读理解任务的基本模型架构和前沿算法,并剖析对机器阅读理解研究有着重要影响的预训练模型(如BERT和GPT)。实战篇(第7~8章),包括笔者在2018年获得CoQA对话阅读理解竞赛*名时所用的模型SDNet的代码解读,机器阅读理解在各种工业界应用中的具体落地过程和挑战,以及笔者对于机器阅读理解未来发展方向的思考。 作者亲授“机器阅读理解”直播课,搭配图书学习效果更佳! 回放&PPT获取方式 1、微信关注“华章计算机” 2、在后台回复关键词:机器阅读理解
49元5本 工业大数据融合体系结构与关键技术
工业大数据融合体系结构与关键技术
高聪;王忠民;陈彦萍
¥51.35
本书针对工业大数据的融合架构与关键技术行了研究,在对工业4.0、物联网和云计算行分析的基础上,从定义、技术以及管理三个方面对大数据行了阐述,给出了工业大数据融合研究与应用的体系结构。针对工业制造领域的特定应用场景,充分研究了数据的感知、采集和异常检测技术,阐述了现有方法的利弊,分析了存在的问题,并提出了一系列创新的解决方案。
基于GPU加速的计算机视觉编程:使用OpenCV和CUDA实时处理复杂图像数据
基于GPU加速的计算机视觉编程:使用OpenCV和CUDA实时处理复杂图像数据
(美)包米克·维迪雅(Bhaumik Vaidya)
¥51.35
本书提供了OpenCV与CUDA集成以实现实际应用的详细概述。首先介绍使用CUDA行GPU编程的基础知识。然后,通过一些实际的例子讲解如何利用GPU和CUDA实现OpenCV加速。一旦掌握了核心概念,读者将熟悉如何在NVIDIA Jetson TX1上部署OpenCV应用程序,该应用程序在计算机视觉和深度学习应用程序中非常流行。本书的*后几章解释了PyCUDA,这是一个Python库,它利用CUDA和GPU的强大功能来加速。在本书的*后,读者将通过本书的实践方法增强计算机视觉应用程序。
Java自然语言处理(原书第2版)
Java自然语言处理(原书第2版)
(美)理查德·M· 里斯(Richard M· Reese);(印)艾希什辛格·巴蒂亚(AshishSingh Bhatia)
¥51.35
本书将教会读者如何在Java库的帮助下执行语言分析,同时不断地从结果中获得见解。首先介绍NLP及其各种概念是如何工作的,然后探索Java中用于NLP的重要工具和库,如CoreNLP、OpenNLP、Neuroph、Mallet等。之后,读者将始对不同的输和任务执行NLP,例如标记、模型训练、部分语音、解析树等。读者会学习到统计机器翻译、摘要、对话系统、复杂搜索、有监督和无监督的NLP,以及其他内容。在本书的*后,读者也会学习到更多关于NLP、神经网络和其他各种Java中用于增强NLP应用程序性能的训练模型。
49元5本 机器学习实战:基于Sophon平台的机器学习理论与实践
机器学习实战:基于Sophon平台的机器学习理论与实践
星环科技人工智能平台团队
¥51.35
本书内容覆盖了机器学习领域从理论到实践的多个主题,总共分为10章。 第1章为导论,介绍机器学习的背景、定义和任务类型,构建机器学习应用的步骤,以及发机器学习工作流的方式。 第2章详细介绍数据预处理和特征工程技术,并辅以实例行验证。 第3~6章介绍回归模型、分类模型、模型融合和聚类模型,这些内容是机器学习理论和实践中的传统重。其中不仅介绍各种常见数据类型的处理方法,还针对删失数据行了专门的综述和实践。 第7章介绍机器学习领域较难的图计算话题,并从工业界视角解读如何将图计算落地。 第8章针对特征工程、建模过程中大量调参的场景介绍自动机器学习的理论和应用,并细致比较和测试了各种自动特征工程算法在不同数据上的表现。 第9章介绍自然语言处理(词向量、序列标注、关键词抽取、自动摘要和情感分析)技术,使用新闻文本数据搭建文本分类的流程。 第10章介绍计算机视觉中图像分类和目标检测的应用以及车辆检测的落地案例。 本书既适合作为高等院校计算机、软件工程、人工智能等相关专业的教学用书,同时也可供从事机器学习相关领域的工程技术人员阅读和参考,帮助他们掌握机器学习相关的算法原理,并能通过专业工具平台快速搭建各类模型,构建机器学习的行业应用。
PyTorch深度学习实战
PyTorch深度学习实战
(美)谢林·托马斯(Sherin Thomas);(美)苏丹舒·帕西(Sudhanshu Passi)
¥51.35
PyTorch是一个崭新的、轻量级的、以Python为优先发语言的深度学习框架。PyTorch由Facebook发,以其灵活性和高效性迅速成为深度学习专家的*。 PyTorch可以帮助你快速完成深度学习模型的发。 本书介绍了如何基于PyTorch框架实现主要的深度学习模型。本书从简单的神经网络始,内容涵盖了CNN、RNN、GAN和强化学习。你也可以基于PyTorch框架构建深度学习工作流,把基于Python构建的模型迁移到更高效的TorchScript,并使用复杂的工具将其部署到生产环境中。 如果你想成为深度学习专家,那么本书很适合你。 通过本书,你将学习使用PyTorch来构建: 简单神经网络——基于PyTorch高阶函数、优化器及更多方法来构建神经网络。 卷积神经网络——构建高级计算机视觉系统。 循环神经网络——处理自然语言和音频等序列数据。 生成对抗网络——创建包含简单GAN和CycleGAN模型的新内容。 强化学习——发能解决诸如自动驾驶和游戏博弈等复杂问题的系统。 深度学习工作流——基于PyTorch及其实用程序包,通过深度学习工作流将想法有效地用于生产。 生产就绪模型——将模型包以用于高性能生产环境。
49元5本 深度学习:卷积神经网络从入门到精通
深度学习:卷积神经网络从入门到精通
李玉鑑
¥51.35
Array
49元5本 R的极客理想——量化投资篇
R的极客理想——量化投资篇
张丹
¥51.35
本书是《R的极客理想》系列丛书的第三本,是将R语言与金融量化投资相结合的一本书。本书主要的写作目的是把R语言的技术和实际的金融量化案例结合起来,让读者能切身体会如何把知识变成真正的生产力。本书中的原创观点和方法,都是基于理论研究和实践的成果。实际上,长久以来我也在找这样一本书,能够把书本上的理论模型与实际业务相结合,但并没有找到,或者并没有符合中国市场的实际案例应用,所以只能自己动手写一本。本书有点像自己的笔记,我也会经常翻看,让自己的头脑始终保持思路清晰。
49元5本 大话机器人
大话机器人
高德东
¥51.35
《大话机器人》第0章为绪论,对机器人的需求及教育现状行概述;第1童主要介绍机器人定义、机器人分类、机器人组成部件及相关技术参数等基本概念;第2章系统阐述前工业机器人时代国内外机器人的起源和发展历史,以及现代机器人的畅想;第3章主要介绍工业机器人到现代机器人的发展历程,包括*代、第二代和第三代机器人;第4章主要介绍当前机器人在各行业领域中的应用状况;第5章预测了机器人发展的两个趋势,即“向人”和“向机器”的对立属性发展,并围绕道德、法律、责任、义务、权利掌对机器人伦理问题行了讨论。 《大话机器人》对机器人发展历史行全面而系统的梳理,图文并茂,调动学生对机器人的兴致,并为教师配备了电子教案,方便教师展教学。 《大话机器人》可作为高等院校各类专业的机器人普及教材,也可为相关人员了解和认识机器人提供参考。
49元5本 RPA智能机器人:实施方法和行业解决方案
RPA智能机器人:实施方法和行业解决方案
朱龙春
¥51.35
这是一部为企业应用RPA智能机器人提供实施方法论和解决方案的著作。 作者团队RPA技术、产品和实践方面有深厚的积累,不仅有作者研发出了行业领先的国产RPA产品,同时也有作者在万人规模的大企业中成功推广和应用国际*有名的RPA产品。本书首先讲清楚了RPA平台的技术架构和原理、RPA应用场景的发现和规划等的理论知识,然后重讲解了人力资源、财务、税务、ERP等领域的RPA实施方法和解决方案,具有非常强的实战指导意义。 全书从逻辑上分为三个部分: 基础篇(第1章) 简单介绍了RPA的定义、产生背景、发展历程、优势、适用场景、行业生态,以及主流RPA平台的技术架构和原理,能帮助读者快速掌握RPA的基础知识。 方法论篇(第2章) 重讲解了企业应该如何去发现适合应用RPA的业务场景和业务流程、如何对识别出的RPA流程行评价和分析、PoC的几种方式、CoE组织的建立,以及RPA发和落地的通用管理理论。 实战篇(第3~5章) 详细讲解了RPA智能机器人在人力资源、财务、税务、ERP等领域的各种场景和业务中的实施方法论和解决方案,包含大量的典型案例。
49元5本 智能语音处理
智能语音处理
张雄伟,孙蒙,杨吉斌
¥51.35
本书从智能化社会对语音处理提出的新要求出发,系统地介绍了智能语音处理涉及的基础理论、基本技术、主要方法以及典型的智能语音处理应用,理论与实际紧密结合,适合作为高等院校人工智能、电子信息工程、物联网工程、数据科学与大数据技术、通信工程等专业高年级本科生以及智能科学与技术、信号与信息处理、网络空间安全、通信与信息系统等学科研究生的参考教材,也可供从事语音处理技术研究与应用的科研及工程技术人员参考。 本书共11章,可分为四个部分。 *部分是导论,对应第1章,概要介绍了经典语音处理与智能语音处理的基本概念以及语音处理的典型应用。 第二部分是基础理论,包括第2~5章。第2章介绍了稀疏和稀疏表示、冗余字典以及压缩感知的基本原理和方法;第3章介绍了隐变量模型,包括高斯混合模型、隐马尔可夫模型和高斯过程隐变量模型等;第4章主要介绍主成分分析和非负矩阵分解两种典型的组合模型;第5章主要介绍人工神经网络和深度学习的基础知识以及深度神经网络的典型结构。 第三部分是应用实践,包括第6~10章。第6章综合利用稀疏表示、字典学习、深度学习等智能处理技术,分别介绍基于K-L展的字典学习的语音压缩感知、基于梅尔倒谱系数重构的抗噪低速率语音编码以及基于深度自编码器的抗噪低速率语音编码这三种方案;第7章重介绍了基于非负矩阵分解和基于深度学习的智能语音增强方法;第8章在介绍语音转换的基本原理的基础上,重介绍了基于非负矩阵分解和基于深度神经网络的谱转换方法;第9章首先介绍了说话人识别系统的框架和模型,然后分别介绍了基于i-vector和基于深度神经网络的说话人识别方法;第10章在介绍骨导语音特性和骨导语音盲增强的基本原理的基础上,分别介绍了基于长短时记忆网络和基于均衡-生成组合谱映射的骨导语音盲增强方法。 第四部分是结束语,对应第11章,对全书行了总结,并对智能语音处理的未来发展行展望。