万本电子书0元读

万本电子书0元读

满3件5折 大话机器人
大话机器人
高德东
¥51.35
《大话机器人》第0章为绪论,对机器人的需求及教育现状行概述;第1童主要介绍机器人定义、机器人分类、机器人组成部件及相关技术参数等基本概念;第2章系统阐述前工业机器人时代国内外机器人的起源和发展历史,以及现代机器人的畅想;第3章主要介绍工业机器人到现代机器人的发展历程,包括*代、第二代和第三代机器人;第4章主要介绍当前机器人在各行业领域中的应用状况;第5章预测了机器人发展的两个趋势,即“向人”和“向机器”的对立属性发展,并围绕道德、法律、责任、义务、权利掌对机器人伦理问题行了讨论。 《大话机器人》对机器人发展历史行全面而系统的梳理,图文并茂,调动学生对机器人的兴致,并为教师配备了电子教案,方便教师展教学。 《大话机器人》可作为高等院校各类专业的机器人普及教材,也可为相关人员了解和认识机器人提供参考。
满3件5折 TensorFlow机器学习实战指南(原书第2版)
TensorFlow机器学习实战指南(原书第2版)
(美)尼克·麦克卢尔(Nick McClure)
¥57.85
本书由数据科学家撰写,从实战角度系统讲解TensorFlow基本概念及各种应用实践。真实的应用场景和数据,丰富的代码实例,详尽的操作步骤,带领读者由浅深系统掌握TensorFlow机器学习算法及其实现。 本书第1章和第2章介绍了关于TensorFlow使用的基础知识,后续章节则针对一些典型算法和典型应用场景行了实现,并配有较详细的程序说明,可读性非常强。读者如果能对其中代码行复现,则必定会对TensorFlow的使用了如指掌。
满3件5折 MXNet深度学习实战
MXNet深度学习实战
魏凯峰
¥57.85
这是一本详细讲解计算机视觉算法实现以及MXNet框架的原理和使用的工具书。 作者是网易的资深计算机视觉算法工程师,本书融合了他丰富的工程实践经验,一方面详细讲解了深度学习框架MXNet的技术原理和应用方法,一方面以MXNet为工具讲解了算法实现的具体细节。辅以大量简洁的代码,助你从零基础始实现深度学习算法。 全书共12章,分为4个部分: *部分 准备篇(第1~2章) 介绍了MXNet的发展、优势、预备知识、各种深度学习框架的对比,以及发环境的搭建,包括Docker的使用。 第二部分 基础篇(第3~7章) 纤细讲解了MXNet主要模块使用和原理,如MXNet的数据读取、数据增强操作、常用网络层的含义及使用、常见网络结构的设计思想、模型训练相关的参数配置等。 第三部分 实战篇(第8~10章) 以图像分类、目标检测、图像分割这三个常用领域为例演示了如何通过MXNet实现算法训练和模型测试,同时还结合MXNet的口详细讲解了算法实现的细节。 第四部分 扩展篇(第11~12章) 主要介绍了基于动态图构建网络结构的Gluon口,以及MXNet专门为计算机视觉任务推出的深度学习库GluonCV。
满3件5折 AutoCAD 2015中文版从入门到精通
AutoCAD 2015中文版从入门到精通
管殿柱;牛雪倩;魏代善
¥38.35
  本书以AutoCAD2015中文版为操作平台,结合典型实例循序渐地介绍了软件的每一个知识。全书共16章,第1~2章介绍AutoCAD2015的基础知识和绘图基础;第3~9章介绍二维图形的绘制和编辑方法,包括尺寸标注、文字和表格的添加、块操作以及图层管理等内容;第10~12章介绍了三维图形的绘制、编辑和渲染,并介绍了工程图的输与输出;第13~16章通过4个典型案例讲解了AutoCAD在机械设计、建筑设计、室内装潢设计和电气设计方面的应用。本书图文并茂、语言简洁、思路清晰、内容翔实,可作为初学者的门用书和相关工程技术人员的参考资料,也可作为各类计算机培训中心、中职中专、高职高专和AutoCAD认证考试的辅导与自学用书。
满3件5折 深入理解XGBoost:*机器学习算法与进阶
深入理解XGBoost:*机器学习算法与进阶
何龙
¥65.35
本书以机器学习基础知识做铺垫,深剖析XGBoost的原理、分布式实现、模型优化、深度应用等。 ?第1~3章使读者对机器学习算法形成整体认知,了解如何优化模型以及评估预测结果,并熟悉常用机器学习算法的实现原理和应用,如线性回归、逻辑回归、决策树、神经网络、支持向量机等。 ?第4章借助实际案例,讲解如何通过XGBoost解决分类、回归、排序等问题,并介绍了XGBoost常用功能的使用方法。 ?第5~7章是本书的重,从理论推导与源码层面深剖析XGBoost,涵盖XGBoost原理与理论证明、分布式XGBoost的实现、XGBoost各组件的源码解析。 ?第8~9章为阶内容,着重解析算法实践与工程应用中的难,而帮助读者更好地解决实际问题。 ?第10章介绍了一些较为前沿的将树模型与其他模型融合的研究方法,以拓眼界,拓展思路。
满3件5折 嵌入式实时操作系统:RT-Thread设计与实现
嵌入式实时操作系统:RT-Thread设计与实现
邱祎;熊谱翔;朱天龙
¥57.85
  本书由自研源嵌式实时操作系统RT-Thread核心作者撰写,专业性毋庸置疑,系统剖析嵌式系统核心设计与实现,掌握物联网操作系统精髓。本书分为两大部分,共16章,第1~10章为内核篇;第11~16章为组件篇。   内核篇(第1~10章)详解RT-Thread内核,先对RT-Thread行总体介绍,再分别介绍RT-Thread的核心技术——线程管理、时钟管理、线程间同步、线程间通信、内存管理、中断管理与内核移植。   组件篇(第11~16章)分别介绍Env发环境、FinSH控制台、设备管理、文件系统和网络框架。   各章均有配套示例,方便读者动手实践和参考。
满3件5折 深度强化学习:学术前沿与实战应用
深度强化学习:学术前沿与实战应用
刘驰;等
¥65.35
本书共分为四篇,即深度强化学习、多智能体深度强化学习、多任务深度强化学习和深度强化学习的应用。由浅深、通俗易懂,涵盖经典算法和近几年的前沿技术展。特别是书中详细介绍了每一种代表性算法的代码原型实现,旨在理论与实践相结合,让读者学有所得、学有所用。 *篇(包含第1~3章)主要讲解深度强化学习基础,侧重于单智能体强化学习算法,相对简单,有助于初级读者理解,同时涵盖了近几年的经典算法和一些前沿的研究成果。 第二篇(包含第4~5章)主要侧重于对多智能体深度强化学习的讲解,从多智能体强化学习基本概念到相关算法的讲解和分析,以多个极具代表性的算法为例带领读者逐步学习多智能体训练及控制的理论与方法。同时,还介绍了多智能体强化学习领域一些前沿学术成果。 第三篇(包含第6~7章)扩展到多任务场景,称为多任务深度强化学习。首先介绍了多任务强化学习的基本概念和相关基础知识,随后讲解了部分经典的多任务深度强化学习算法。 第四篇(包含第8~11章)主要讲解深度强化学习的实际应用,涉及游戏、机器人控制、计算机视觉和自然语言处理四大领域。通过领域应用中思想和方法的讲解,培养读者跨领域解决实际问题的能力,以帮助读者熟练掌握和使用深度强化学习这一强大的方法来解决和优化实际工程领域中的问题。
满3件5折 测试反模式:有效规避常见的92种测试陷阱
测试反模式:有效规避常见的92种测试陷阱
(美)费尔史密斯(Firesmith,D· G·)
¥38.35
《测试反模式:有效规避常见的92种测试陷阱》系统归纳了在日常的发过程中容易出现的92种测试陷阱,从描述、可能出现之处、典型症状、潜在的负面后果、潜在原因、建议和相关的陷阱等多个方面探讨了这些陷阱,可帮助测试人员、技术经理和其他利益相关者避免陷这些陷阱、在陷的时候识别这些陷阱,以及在逃脱陷阱的同时将负面后果小化。 《测试反模式:有效规避常见的92种测试陷阱》共分4章:第1章讲解测试、缺陷和测试陷阱等重要概念,并介绍如何对测试陷阱行分类和记录,以便能更容易地找到并理解它们;第2章总结了92种常见的测试陷阱,并对每种陷阱行了简要介绍,以帮助读者轻松寻找并识别出相关的陷阱;第3章是本书的核心内容,详细讲解经常发生的92种测试陷阱,包括名字、描述、适用性、典型症状、潜在的负面后果、潜在原因和相关的规避陷阱或限制后果的建议;第4章提供了关于测试陷阱的整体总结,然后简单地介绍了未来可能使测试陷阱分类更加有用的研究。此外,附录部分还提供了词汇表、缩略语、注释、参考和计划检查单,帮助读者快速了解大部分陷阱,指导实际工作。
满3件5折 Python机器学习(原书第3版)
Python机器学习(原书第3版)
(美)塞巴斯蒂安·拉施卡(Sebastian Raschka);(美)瓦希德·米尔贾利利(Vahid Mirjalili)
¥90.40
本书自第1版出版以来,备受广大读者欢迎。第3版结合TensorFlow 2和scikit-learn的*新版本进行了更新,其范围进行了扩展,以涵盖强化学习和生成对抗网络(GAN)这两种*先进的机器学习技术。与同类书相比,本书除了介绍如何用Python和基于Python的机器学习软件库进行实践外,还讨论了机器学习概念的必要细节,同时对机器学习算法的工作原理、使用方法以及如何避免掉入常见的陷阱提供了直观且翔实的解释,是Python机器学习入门之作。书中涵盖了众多*Python库,包括scikit-learn、Keras和TensorFlow等,系统性地梳理和分析了各种经典算法,并通过Python语言以具体代码示例的方式深入浅出地介绍了各种算法的应用,还给出了从情感分析到神经网络的一些实践技巧,可帮助读者快速解决自己和团队面临的一些重要问题。本书适用于机器学习的初学者和专业技术人员。
满3件5折 大圣陪你学AI:人工智能从入门到实验(上册)
大圣陪你学AI:人工智能从入门到实验(上册)
徐菁;李轩涯;刘倩;计湘婷
¥65.35
本书以孙悟空师徒学习AI为题材,通过主人公孙大圣学习AI知识和方法,并教授其他师兄弟了解AI知识,帮助他们通过百度AI技术掌握特殊技能,实现梦想。全书分8章,分别通过卡通故事给少儿读者讲解几项简单的AI技术,然后通过百度AI平台让读者参与实验了解AI技术是什么。本书以少儿读者为对象,以卡通动漫的形式科普AI知识和技术,为少儿AI梦想的大门。
满3件5折 大圣陪你学AI:人工智能从入门到实验(下册)
大圣陪你学AI:人工智能从入门到实验(下册)
徐菁;李轩涯;刘倩;计湘婷
¥65.35
本书以孙悟空师徒学习AI为题材,通过主人公孙大圣学习AI知识和方法,并教授其他师兄弟了解AI知识,帮助他们通过百度AI技术掌握特殊技能,实现梦想。全书分8章,分别通过卡通故事给少儿读者讲解几项简单的AI技术,然后通过百度AI平台让读者参与实验了解AI技术是什么。本书以少儿读者为对象,以卡通动漫的形式科普AI知识和技术,为少儿AI梦想的大门。
满3件5折 Keras深度学习实战
Keras深度学习实战
(印)拉蒂普·杜瓦(Rajdeep Dua)
¥44.85
第1章介绍了Keras的安装和设置过程以及如何配置Keras。 第2章介绍了使用CIFAR-10、CIFAR-100或MNIST等数据集,以及用于图像分类的其他数据集和模型。 第3章介绍了使用Keras的各种预处理和优化技术,优化技术包括TFOptimizer、AdaDelta等。 第4章详细描述了不同的Keras层,包括递归层和卷积层等。 第5章通过宫颈癌分类和数字识别数据集的实例,详细解释如何使用卷积神经网络算法。 第6章包括基本的生成式对抗网络(GAN)和边界搜索GAN。 第7章涵盖了递归神经网络的基础,以便实现基于历史数据集的Keras。 第8 章包括使用Keras行单词分析和情感分析的NLP基础知识。 第9章展示了如何在Amazon评论数据集中使用Keras模型行文本概述。 第10章侧重于使用Keras设计和发强化学习模型。
满3件5折 TensorFlow深度学习实战
TensorFlow深度学习实战
(波)安东尼奥·古利(Antonio Gulli)
¥65.35
本书将介绍如何有效地使用Google的源框架TensorFlow行深度学习。通过学习,你将实现不同的深度学习网络,如卷积神经网络(CNN)、循环神经网络(RNN)、深度Q learning网络(DQN)和生成对抗网络(GAN),以及如何使用TensorFlow的高级封装Keras工具。
满3件5折 TensorFlow自然语言处理
TensorFlow自然语言处理
(澳)图珊·加内格达拉(Thushan Ganegedara)
¥65.35
第1章是对NLP的简单介绍。该章将首先讨论我们需要NLP的原因。下来,将讨论NLP中一些常见的子任务。之后,将讨论NLP的两个主要阶段,即传统阶段和深度学习阶段。通过研究如何使用传统算法解决语言建模任务,我们将了解传统阶段NLP的特。然后,将讨论深度学习阶段,在这一阶段中深度学习算法被大量用于NLP。我们还将讨论深度学习算法的主要系列。*后,将讨论一种*基本的深度学习算法:全连神经网络。该章结束时会提供一份路线图,简要介绍后面的内容。 第2章介绍Python TensorFlow库,这是我们实现解决方案的主要平台。首先在TensorFlow中编写一段代码,执行一个简单的计算,并讨论从运行代码到得到结果这一过程中到底发生了什么。我们将详细介绍TensorFlow的基础组件。把Tensorflow比作丰富的餐厅,了解如何完成订单,以便一步加强对TensorFlow的理解。稍后,将讨论TensorFlow的更多技术细节,例如数据结构和操作(主要与神经网络相关)。*后,我们将实现一个全连的神经网络来识别手写数字。这将帮助我们了解如何使用TensorFlow来实现端到端解决方案。 第3章首先讨论如何用TensorFlow解决NLP任务。在该章中,我们将讨论如何用神经网络学习单词向量或单词表示。单词向量也称为词嵌。单词向量是单词的数字表示,相似单词有相似值,不同单词有不同值。首先,将讨论实现这一目标的几种传统方法,包括使用称为WordNet的大型人工构建知识库。然后,将讨论基于现代神经网络的方法,称为Word2vec,它在没有任何人为干预的情况下学习单词向量。我们将通过一个实例来了解Word2vec的机制。着,将讨论用于实现此目的的两种算法变体:skip-gram和连续词袋(CBOW)模型。我们将讨论算法的细节,以及如何在TensorFlow中实现它们。 第4章介绍与单词向量相关的更高级方法。首先,会比较skip-gram和CBOW,讨论其中哪一种有明显优势。下来,将讨论可用于提高Word2vec算法性能的几项改。然后,将讨论一种更新、更强大的词嵌学习算法:GloVe(全局向量)算法。*后,将在文档分类任务中实际观察单词向量。在该练习中,我们将看到单词向量十分强大,足以表示文档所属的主题(例如,娱乐和运动)。 第5章讨论卷积神经网络(CNN),它是擅长处理诸如图像或句子这样的空间数据的神经网络家族。首先,讨论如何处理数据以及处理数据时涉及哪种操作,以便对CNN有较深的理解。下来,深研究CNN计算中涉及的每个操作,以了解CNN背后的数学原理。*后,介绍两个练习。*个练习使用CNN对手写数字图像行分类,我们将看到CNN能够在此任务上很快达到较高的准确率。下来,我们将探讨如何使用CNN对句子行分类。特别地,我们要求CNN预测一个句子是否与对象、人物、位置等相关。 第6章介绍递归神经网络。递归神经网络(RNN)是一个可以模拟数据序列的强大的神经网络家族。首先讨论RNN背后的数学原理以及在学习期间随时间更新RNN的更新规则。然后,讨论RNN的不同变体及其应用(例如,一对一RNN和一对多RNN)。*后,用RNN执行文本生成任务的练习。我们用童话故事训练RNN,然后要求RNN生成一个新故事。我们将看到在持久的长期记忆方面RNN表现不佳。*后,讨论更高级的RNN变体,即RNN-CF,它能够保持更长时间的记忆。 第7章介绍长短期记忆网络。RNN在保持长期记忆方面效果较差,这使我们需要探索能在更长时间内记住信息的更强大技术。我们将在该章讨论一种这样的技术:长短期记忆网络(LSTM)。LSTM功能更强大,并且在许多时间序列任务中表现得优于其他序列模型。首先通过一个例子,研究潜在的数学原理和LSTM的更新规则,以说明每个计算的重要性。然后,将了解为什么LSTM能够更长时间地保持记忆。下来,将讨论如何一步提高LSTM预测能力。*后,将讨论具有更复杂结构的几种LSTM变体(具有窥孔连的LSTM),以及简化LSTM门控循环单元(GRU)的方法。 第8章介绍LSTM的应用:文本生成。该章广泛评估LSTM在文本生成任务中的表现。我们将定性和定量地衡量LSTM产生的文本的好坏程度,还将比较LSTM、窥孔连LSTM和GRU。*后,将介绍如何将词嵌应用到模型中来改LSTM生成的文本。 第9章转到对多模态数据(即图像和文本)的处理。在该章中,我们将研究如何自动生成给定图像的描述。这涉及将前馈模型(即CNN)与词嵌层及顺序模型(即LSTM)组合,形成一个端到端的机器学习流程。 第10章介绍有关神经机器翻译(NMT)模型的应用。机器翻译指的是将句子或短语从源语言翻译成目标语言。首先讨论机器翻译是什么并简单介绍机器翻译历史。然后,将详细讨论现代神经机器翻译模型的体系结构,包括训练和预测的流程。下来,将了解如何从头始实现NMT系统。*后,会探索改标准NMT系统的方法。 第11章重介绍NLP的现状和未来趋势。我们将讨论前面提到的系统的相关*发现。该章将涵盖大部分令人兴奋的创新,并让你直观地感受其中的一些技术。 附录向读者介绍各种数学数据结构(例如,矩阵)和操作(例如,矩阵的逆),还将讨论概率中的几个重要概念。然后将介绍Keras,它是在底层使用TensorFlow的高级库。Keras通过隐藏TensorFlow中的一些有难度的细节使得神经网络的实现更简单。具体而言,通过使用Keras实现CNN来介绍如何使用Keras。下来,将讨论如何使用TensorFlow中的seq2seq库来实现一个神经机器翻译系统,所使用的代码比在第11章中使用的代码少得多。*后,将向你介绍如何使用TensorBoard可视化词嵌的指南。TensorBoard是TensorFlow附带的便捷可视化工具,可用于可视化和监视TensorFlow客户端中的各种变量。
满3件5折 基于Linux的企业自动化实践:服务器的构建、部署与管理
基于Linux的企业自动化实践:服务器的构建、部署与管理
(美)詹姆斯·弗里曼(James Freeman)
¥77.40
本书提供了一系列有价值的过程、方法和工具,用于企业级Linux部署的精简和高效管理。全书分为三部分。第1部分介绍系统管理基础知识和技术,包括在本书中用于自动化以及包管理和高级系统管理等的工具Ansible。第二部分介绍如何确保一致性和可重复性仍然是Linux服务器环境的核心方面,从而促Linux服务器环境的可伸缩性、再现性和高效性。第三部分介绍企业中Linux服务器的日常管理,将探讨如何使用Ansible和其他工具来实现这些管理目标。第四部分将带你亲身体验安全基准并介绍如何在企业中应用、实施和审计安全基准的实例。
满3件5折 InDesign CC排版设计全攻略:视频教学版
InDesign CC排版设计全攻略:视频教学版
王岩;等
¥44.85
InDesign是主流的专业排版设计软件,被广泛应用于书刊、媒体、平面设计、印刷出版、数字媒体等领域。本书由浅深、图文并茂地讲解了InDesign CC 2018的各项功能、应用技巧和设计手法,并且提供了丰富的设计案例和视频教学,特别适合InDesign新手阅读,对具有一定使用经验的用户其中的案例也有很好的参考价值,还可作为学校、培训机构的教学用书以及广大自学者的学习教材。
满3件5折 我是微商3:开口就成交微演说修炼笔记
我是微商3:开口就成交微演说修炼笔记
徐东遥;王默默;流年小筑
¥38.35
本书是微商界超级畅销书“我是微商”系列的第3本,它系统总结了作者们3年来的演说实战经验,首次披露了他们通过演说累计创造千万元收背后的不传之秘。本书依然以“造微商教育界的实战手册”为目标,让你快速掌握一口就成交的演说技法! 本书从以下5个方面系统总结了如何才能做到口就能成交。 微演说技巧篇:揭秘演说的4个必要过程,从敢讲,到会讲,到讲好,到收到,囊括20大秘诀,帮助微演说初学者克服恐惧,尽快蜕变;呈现微演说4大板块、16种技巧,让每个初学者都能快速掌握演说的精髓。 演说稿设计篇:归纳*演说稿3大框架,以模板形式呈现,让每位伙伴都可以在20分钟内快速搭建文稿框架,快速记忆演讲稿内容;分享10种演讲稿内容设计方法,让每个人都做自己的导演,造走心、留人、自我销售的神奇演说稿。 演说团队造篇:揭秘作者(徐东遥)从0始,造300人万人迷导师团的全过程,告诉你如何一步步将团队所有小伙伴都激励成为超级演说家;揭秘团队激励的6大步骤,告诉你当团队造陷瓶颈期时,说什么样的话可以让伙伴们心潮澎湃,再创佳绩。 活动成交篇:在活动闭幕之前,教你如何通过微演说让加团队的伙伴倍受鼓舞,让未加团队的伙伴积极加,让一场活动的终结成为二次成交的始! 大咖分享篇:中国电子商会微商教育委员会秘书长凌教头,次、一次、后一次的品牌招商战略及流程分享文字原稿;万人迷导师徐东遥,微信群1小时产生40万零售业绩的成交文字原稿及流程剖析。 参照本书介绍的方法,一步步落地执行,就能马上提升业绩、扩大团队。用微演说突破瓶颈,再造辉煌,你准备好了吗?
满3件5折 ROS机器人开发实践
ROS机器人开发实践
胡春旭
¥65.35
本书在介绍ROS总体框架和理论要的基础上,讲解ROS的通信机制、常用组件和阶功能;同时以实践为主,讲解机器视觉、机器听觉、SLAM与导航、机械臂控制、机器学习等多种ROS应用的主要原理和实现方法;并分析基于ROS的机器人系统设计方法和典型实例;后论述ROS2的框架特和使用方法,剖析ROS的发展方向。
满3件5折 新手易学——AutoCAD 2011绘图基础(光盘内容另行下载,地址见书封底)
新手易学——AutoCAD 2011绘图基础(光盘内容另行下载,地址见书封底)
周静
¥21.45
周静编著的《AutoCAD 2011绘图基础》介绍了以AutoCAD 2011为基础绘制图形的基本操作方法。全书包括12章,第1~2章介绍了AutoCAD门基础和绘图基础的相关知识,包括认识AutoCAD的工作界面、新建与图形文件、图形和视图的基本控制等内容;第3~4章介绍了常见二维图形的绘制和编辑方法;第5章介绍了对象特征的修改以及图层的基本操作等内容;第6章介绍了标注样式和创建表格等内容;第7~8章介绍了图案填充、光栅图像、块以及外部参照等内容;第9章介绍了三维实体的创建方法;第10章介绍了实体的编辑与渲染;第11章介绍了图形的印与发布;第12章以三个实例介绍了如何使用AutoCAD快速行作品设计。 《AutoCAD 2011绘图基础》具有很强大的实用性和可操作性,适合于大中专院校相关专业的学生、对设计行业有浓厚兴趣并愿意从事设计工作的初学者学习。
满3件5折 深度探索嵌入式操作系统:从零开始设计、架构和开发
深度探索嵌入式操作系统:从零开始设计、架构和开发
彭东
¥65.35
本书的*终目的是构建一个用于学习的嵌式操作系统内核,并工作在真正的物理机上。为了达到这一目的,本书大体上分为两部分:硬件部分和软件部分。硬件部分首先分析了我们选择的平台,以及这个平台上的组件。软件部分首先分析了操作系统内核是干什么的,其中都有些什么组件,这些个组件分别是干什么的有什么作用。然后是如何设计操作系统架构并将这些重要的组件组合在一起,以及设计时需要注意些什么。*后介绍了构建操作系统的工具。
满3件5折 Python自然语言处理实战:核心技术与算法
Python自然语言处理实战:核心技术与算法
涂铭;刘祥;刘树春
¥44.85
自然语言处理是一门融语言学、计算机科学、数学于一体的学科,比较复杂,学习门槛高,但本书巧妙地避了晦涩难懂的数学公式和证明,即便没有数学基础,也能零基础门。 本书专注于中文的自然语言处理,以Python及其相关框架为工具,以实战为导向,详细讲解了自然语言处理的各种核心技术、方法论和经典算法。三位作者在人工智能、大数据和算法领域有丰富的积累和经验,是*、前明略数据和七牛云的资深专家。同时,本书也得到了*达摩院高级算法专家、七牛云AI实验室Leader等专家的高度评价和鼎力推荐。 全书一共11章,在逻辑上分为2个部分: *部分(第1、2、11章) 主要介绍了自然语言处理所需要了解的基础知识、前置技术、Python科学包、正则表达式以及Solr检索等。 第二部分(第5-10章) 第3~5章讲解了词法分析相关的技术,包括中文分词技术、词性标注与命名实体识别、关键词提取算法等。 第6章讲解了句法分析技术,该部分目前理论研究较多,工程实践中使用门槛相对较高,且效果多是依赖结合业务知识行规则扩展,因此本书未做深探讨。 第7章讲解了常用的向量化方法,这些方法常用于各种NLP任务的输。 第8章讲解了情感分析相关的概念、场景以及一般做情感分析的流程,情感分析在很多行业都有应用。 第9章介绍了机器学习的重要概念,同时重突出NLP常用的分类算法、聚类算法,还介绍了几个案例。 第10章节介绍了NLP中常用的一些深度学习算法,这些方法比较复杂,但是非常实用,需要读者耐心学习。